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Abstract: Research on power transmission lines has been the subject of several studies aiming to
provide relevant information to electrical system users. One of the focuses of this study
area is transmission line fault classification. This paper presents an approach for fault
classification using higher-order statistics and an artificial neural network-based classifier. A
detector based on Euclidean distance was implemented to reduce classifier complexity. The
proposed method takes advantage of requiring only 1⁄32 cycles of postfault data to perform
the classification; therefore, it is suitable for real-time processing. The proposed method
classified 10 classes of faults with global efficiency above 97%.
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INTRODUCTION

Power transmission lines are long elements
exposed to natural and human events that can
lead to malfunctions. A fault is defined as
any failure that interferes with normal current
flow (GRAINGER; STEVENSON, 1994). Faults
occur mainly when electrical discharges damage
the line insulators. In this context, fast
fault detection and classification have become
essential so that ultrafast relays can trip to

minimize the harmful effects of a fault.

The types of transmission line faults that can
occur can be categorized into eleven classes.
According to Avagaddi, Edward, and Ravi
(2017), single line-to-ground (SLG) faults are the
most common and least dangerous, occurring in
just one phase (AG, BG, CG). Two-phase faults
(AB, BC, CA) are slightly more rare and severe.
Double line-to-ground (DLG) faults, which
involve two phases and a ground (ABG, BCG,
CAG), are much less common and more harmful.



Bouzon P. H. G. et al.

Finally, three-phase faults (ABC and ABCG)
rarely occur; however, when they do, they can
lead to electric system collapse. Three-phase
faults are usually known as symmetric faults,
while the other faults are known as asymmetric
faults.

Several fault detection and classification
methodologies can be found in the literature.
In general, they differ in the feature extraction
technique and classification method. The
wavelet transform (WT) was used together
with an artificial neural network (ANN) in
Silva, Souza, and Brito (2006) and with linear
discriminant analysis (LDA) in Yadav and
Swetapadma (2015). The half-cycle discrete
Fourier transform (HCDFT) was adopted in the
works reported in Arash Jamehbozorg and S
Mohammad Shahrtash (2010) and Jamehbozorg
and SM Shahrtash (2010) in conjunction
with a decision tree to classify faults. The
concept of the Stockwell transform (ST) was
used in Samantaray, Dash, and Panda (2006),
Samantaray and Dash (2008) and Samantaray
(2013).

In Thukaram, Khincha, and Vijaynarasimha
(2005), principal component analysis (PCA) was
applied directly to current and voltage signals,
and in Cheng, Wang, and Gao (2015), a feature
extraction stage based on random projections
was applied. In Godse and Bhat (2020), the
feature extraction and feature selection stages
were conducted using a morphological median
filter (MMF) and information gain, respectively.
Three methods were used for fault classification
(a decision tree, a neural network and a support
vector machine (SVM)), and their performances
were compared to analyze which one had better
accuracy. Almeida et al. (2017) used independent
component analysis (ICA) as a preprocessing
stage and signal filtering for an SVM-based
classifier to compare the classification of the
filtered signal and noisy signal.

In this study, voltage signals are continuously
monitored by a Euclidean distance-based
detector (RIBEIRO, E. G. et al., 2018). If a
fault is detected, higher-order statistics (HOS)
are used to extract features of current and
voltage signals in the form of cumulants. Fault
classification is performed with a multilayer
neural network (MNN). The novelties of the

method are the use of cumulants in a form
proposed by Danton D Ferreira et al. (2011)
to classify faults in transmission lines. HOS
is used in the preprocessing phase to extract
meaningful characteristics from the signal, after
which Pearson’s correlation coefficient and
Fisher’s linear discriminant are applied to the
data to select the most relevant features for
classification. The advantage of this approach is
that HOS is immune to Gaussian noise and has
a good ability to represent nonlinear processes.

Compared with other works in this area,
the contribution of the paper is that the
proposed method classifies fault occurrences in
the transmission line when little information is
available. Few projects explore the possibility of
dealing with fewer than 1⁄4 cycles. Therefore, for
this project, a model was projected by varying
the signal sampling after a fault occurrence. Tests
were performed considering 1⁄4 prefault cycles
and 1, 1⁄2, 1⁄4, 1⁄8, 1⁄16, 1⁄32 postfault cycles. For
each variation, a model was built, and their
performances were compared, which allowed us
to measure the impact of the lack of information
for the proposed method. It is important to note
that a fairly good result was obtained even when
signals with 1⁄32 cycles were used.

The rest of the paper is divided as follows:
Section 2 describes the proposed method, where
Higher-order statistics are explained, and the
data set used. In Section 3, the results
are presented and discussed. Finally, the
conclusions are presented in Section 4.

MATERIAL AND METHODS

The proposed method

The proposed method is organized as follows:
Voltage signals are monitored by a detector
based on Euclidean distance (RIBEIRO, E. G.
et al., 2018); if an abnormal condition is detected,
current and voltage signals are segmented
and features based on higher-order statistics are
extracted; The most significant characteristics are
selected based on Fisher’s linear discriminant,
and the redundance among them is eliminated
using Pearson’s coefficient; Finally, a multilayer
perceptron performs the classification
in one of the following fault categories:
AT, BT, CT, AB, AC, BC, ABT, ACT, BCT and
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ABT . Figure 1 shows the block diagram for
the proposed method. Fig 1 shows the block
diagram for the proposed method.

Figure 1: Proposed method block diagram.

Dataset

The data used in this project were
generated using the Bergeron model with
Simulink/MATLAB and ATP software. The
model used was presented by Costa, Souza,
and Brito (2010); however, some of the fault
characteristics were changed for this project.
Its diagram can be seen in Figure 2, and Table
1 presents its parameters. The transmission
system is composed by two transmission lines
of 300 km each, the rated voltage is 500 kV and a
noise with 60 dB signal-to-noise ratio (SNR) was
added. The fundamental frequency adopted was
60 Hz, and the sampling frequency was 15,360
Hz, resulting in 256 points per cycle. Ten fault
types were simulated: AT, BT, CT, AB, AC, BC,
ABT, ACT, BCT and ABC.

S1

ZS1

B1
TL1

B2
TL2

B3

S2

ZS2

Figure 2: Diagram for the electrical system used to
generate the data.

Altogether, 950 faults were generated. Table
2 describes the five parameters’ combinations
used in the simulation. In each combination, 190
signals of each fault type were generated with
incidence angles from 0° to 180° with steps of 10°.

Table 1: Parameters of the electrical system model.

Source - S1 Source - S2
V = 500.0 0◦kV V = 500.0 20◦kV

ZS10 = 1.0140 + j18.754Ω/km ZS20 = 1.1268 + j20.838Ω/km
ZS11 = 0.8710 + j25.661Ω/km ZS21 = 0.9681 + j28.513Ω/km

Transmission Lines - TL1 & TL2
ZTL1 = 0.3996 + j0.9921Ω/km ZTL2 = 0.0333 + j0.3170Ω/km

YTL1 = 3.0839µ℧/km YTL2 = 5.2033µ℧/km

The data was divided into design data (70%) and
test data (30%).

Table 2: Simulation parameters.

Resistance (Ohms) Distance to Local Bar (km)
1 20
1 150
1 280

50 150
100 150

Fault detection

The fault detector used in this work was
proposed by Eduardo G Ribeiro et al. (2018),
where the monitoring is made with a sliding
window (sample by sample) equal to one cycle
of the fundamental signal. In this method,
the voltage signal is considered a d-dimensional
point, where d is the size of the monitored
window. The distance from this point to the
center of the space, defined as c = [0 0 0 · · · 0d],
is then calculated. The fault detection (distance
calculation) operation is described as follows:

r = ∥v − c∥2 (1)

where v represents the monitored window and
is the center of the space. This analysis derives
a hyper spherical region on the d-dimensional
space that models the nondisturbed signals
(RIBEIRO, E. G. et al., 2018).

In this project, detection was conducted using
only the voltage signals. When a fault was
detected in a given phase, the same cut point was
used for the other two. This point was also used
in the current signals without the need to use the
detector again.

To define the region where there is no fault,
nominal signals comprising phases from −180°
to 180° and SNR (signal-to-noise ratio) of 60 dB are
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used to determine the values of r in this case.
From these values, the lower and upper limits
are adopted as:

rmax = r̄ + 3 ∗ σ (2)

and

rmin = r̄ − 3 ∗ σ (3)

where r̄ is the mean value and σ is the standard
deviation of r.

When a fault is detected, a window with a
quarter of prefault cycles and 1⁄32 postfault cycles
is segmented for feature extraction. The quantity
of pre- and postfault data was determined
experimentally. Those values were initially set
to the size of one cycle and then reduced to
a point where the results were still acceptable.
The prefault data were introduced to add
information about the transition from a normal
condition to a fault condition.

Higher-order statistics

In the past, signal processing, signal analysis,
system identification, and signal estimation
problems were primarily based on second-order
statistical information. Autocorrelations and
cross-correlations are examples of second-order
statistics (SOS). The power spectrum, which is
widely used and contains useful information, is
also based on the SOS in that the power spectrum
is the one-dimensional Fourier transform of the
autocorrelation function. As Gaussian processes
exist, and a Gaussian probability density
function (pdf) is completely characterized
by its first two moments, the analysis of
linear systems and signals has so far been
quite effective in many circumstances. It has
nevertheless been limited by the assumptions
of Gaussianity, minimum phase systems and
linear systems. When signals are non-Gaussian,
the first two moments do not define their pdf,
and consequently, higher-order statistics (HOS),
namely, of order greater than two, can reveal
information about them other than SOS alone.

Higher-order statistics (HOS) can be described
by means of cumulants or moments. The first

applies to random signals, while the second
applies to deterministic signals. This technique
is better explored when used on non-Gaussian
processes and nonlinear systems (FERREIRA,
Danton D et al., 2011), (FERREIRA, D. et al.,
2009), which makes the approach promising for
transmission line fault classification.

The cumulants of the second, third, and fourth
orders of a random signal x[n] with Ex[n] = 0
are respectively given by Mendel (1991):

c2,x[i] = E{x[n]x[n + 1]}, (4)

c3,x[i] = E{x[n]x2[n + 1]}, (5)

c4,x[i] = E{x[n]x3[n + 1]} − 3c2,x[i]c2,x[0] (6)

Considering a finite vector with size N, the
stochastic approximations result in (KUSHNER;
YIN, 2003):

ĉ2,x[i] =
2
N

N/2−1

∑
n=0

x[n]x[n + i], (7)

ĉ3,x[i] =
2
N

N/2−1

∑
n=0

x[n]x2[n + i] (8)

and

ĉ4,x[i] =
2
N

N/2−1

∑
n=0

x[n]x3[n + i]−

2
N2

N/2−1

∑
n=0

x[n]x[n + i]
N/2−1

∑
n=0

x2[n], (9)

where i = 0, 1, · · · , N
2 − 1. (7), (8), and (9)

cannot be used for i > N
2 − 1 because the index

n + i exceeds the size of the vector. Due to
this limitation, alternative approximations were
introduced by Moisés V Ribeiro et al. (2007). In
this new approach, the cumulants are estimated
as follows:

ĉ2,x[i] =
1
N

N−1

∑
n=0

x[n]x[mod(n + i, N)], (10)
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ĉ3,x[i] =
1
N

N−1

∑
n=0

x[n]x2[mod(n + i, N)] (11)

and

ĉ4,x[i] =
1
N

N−1

∑
n=0

x[n]x3[mod(n + i, N)]−

3
N2

N−1

∑
n=0

x[n]x[mod(n + i, N)]
N−1

∑
n=0

x2[n],

(12)

where mod(n + 1, N) is the integer remainder
of the division of n + i by N. The use of the
mod operator implies in the assumption that the
vector x[n] is periodic.

The use of HOS to obtain relevant information
about electrical signals in power systems has
been shown to be a good alternative for feature
extraction (ROSA; MORENO-MUNOZ, 2009).
For a finite feature vector, such statistics can
be approximated by (10), (11) and (12). In
this work, such approximations were used
to extract relevant higher-order features from
the monitored three phase voltage and current
signals.

According to Mendel (1991), the second-order
cumulant C2,x(i) is just the autocorrelation of
x[n]. The third-order cumulant C3,x(i) measures
if a random process (in this case the signal
x[n]) is symmetrically distributed, and if so,
its third-order cumulant equals zero. Thus,
the third-order cumulant is a measure of how
different a random process is from a symmetric
distribution. On the other hand, the fourth-order
cumulantC4,x(i) provides a measure of the
distance of a random process (x[n]) from
Gaussianity. If signal x[n] presents a Gaussian
distribution, the fourth-order cumulant is zero.
It is worth mentioning that equations (4) to
(6) give the variance, skewness and kurtosis
measures in terms of cumulants at zero lags (i
= 0). For different lags, further higher-order
information may be captured with the cumulants
from the transmission line faults that are useful
for classification purposes.

Fisher’s discriminant ratio

Since the set of features generated by this
approach is very large, Fisher’s discriminant

ratio (FDR) was used to select the best cumulants
that discriminate between classes. FDR has
been applied in classification problems to select
and reduce input data (BARBOSA et al.,
2016), (NAVES; BARBOSA; FERREIRA, 2016),
(GUEDES et al., 2015). The FDR cost function
for a problem with M classes is given by
(THEODORIDIS et al., 2010):

J =
M

∑
i

M

∑
j ̸=i

(µi − µj)
2 ⊙ 1

(σ2
i + σ2

j )
(13)

where µi, σi, µj and σj are the mean and
variance vectors in classes i and j, respectively.
Symbol ⊙ implements the Hadamard product.
Considering a feature space with l = 1, 2, ..., L
features, the higher is the value of Jl , more
relevant is the l-st feature.

Pearson’s Correlation Coefficient

Since FDR does not remove redundancy,
another technique must be used for this purpose.
In this work, an algorithm based on Pearson’s
correlation coefficient was implemented to
limit the correlation between the selected
features. The calculated Pearson coefficient for
the features ci and cj with autocorrelation and
cross-correlation matrices equal to σii, σjj and σij
is given by:

Rij =
σij

σii ∗ σjj
(14)

where the closer to the unit the absolute value of
Rij is, the greater the correlation of features.

From (14), the developed algorithm calculates
the Rij between all features selected by the FDR,
and for each pair of feature with Rij > 0.8, the
feature with the lowest J value (see Equation
(13)) is discarded.

Multilayer Neural Network

The multilayer neural network (multilayer
perceptron - MLP) consists of a system of
simple interconnected neurons and represents a
nonlinear mapping between an input vector and
an output vector. The neurons are connected by
weights and output signals that are a function
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of the sum of the neuron inputs modified
by a nonlinear activation function (GARDNER;
DORLING, 1998).

According to Murtagh (1991), to define
a multilayer artificial neural network, it is
necessary to determine its configuration or
architecture (number of layers, number of
neurons per layer, etc.), the activation function
to be used in neurons, the training method to be
used, and how to update weights (real time or
offline).

During network training, the dropout
technique was used, which prevents the
occurrence of overfitting and provides a
method for efficiently combining different
neural networks architectures. For this purpose,
neurons are temporarily removed from the
network along with all their input and output
connections (SRIVASTAVA et al., 2014). The
choice of units to be removed is made at random
and for this project a rate of 20% was chosen for
the removal of neurons.

Another technique used was early stopping,
which also avoids overfitting and is based on
monitoring a certain metric during training.
A constant check is carried out between the
training and test sets to determine whether there
is an improvement, interrupting the process at
the right time and preventing the network from
memorizing the input data.

In this project, the hyperbolic tangent function
was used in the hidden layers, and softmax was
used in the output. In addition, the Adam
optimizer was chosen for the search process
of minimizing the classification error. The
next section presents more details about the
implemented fault classifier.

Fault classification

At this stage, the selected cumulants serve
as the basis for training a multilayer neural
network. This classification method was chosen
because it has a low computational burden and
good capability of solving nonlinear problems.
Initially, the model layout was set to 48 input
nodes, 24 hidden neurons and 10 output neurons
(being one neuron for each class of fault), and
then it was pruned by gradually removing
neurons and observing the change in the model’s

Table 3: Classifier Architecture.

Layer Neurons Activation Function
Hidden Layer 8 Hyperbolic Tangent
Output Layer 10 Softmax

accuracy. The final architecture of the classifier
is presented in Table 3. Such architecture
consists of two layers. The hidden layer has
eight neurons with sigmoidal hyperbolic tangent
activation function, described as follows:

g1(x) =
2

1 + e−2x − 1 (15)

The output layer has ten neurons, representing
the possible faults, with a softmax activation
function, described as follows:

g2(xi) =
e−xi

∑10
j=1 e−xj

(16)

For network training, the Adam optimizer
proposed by Kingma and Ba (2014) was applied.
This optimizer was chosen because it has
shown a faster convergence than others, such
as stochastic gradient descent (KINGMA; BA,
2014). The hyperparameters of this algorithm
were kept at values suggested by the authors of
the method. The used learning rate was 0.01.

RESULTS AND DISCUSSION

Feature Extraction

Second-, third- and fourth-order cumulants
were extracted from phases A, B, C and Z of
the voltage and current signals. For each order
of cumulant, a set of N features was generated,
where N is the size of the window segmented by
the detector, and represents the lags applied in
the cumulant computation. Due to the symmetry
of the second-order cumulants, the first half of
them were discarded. The quadratic mean value
and the absolute maximum value of the signals
were also extracted, leading to a total of 1,456
features.

To reduce the number of features and thus the
computational complexity of the method, FDR
was applied to the total set of features. Figure
3 shows the result of the FDR cost function in
terms of the feature set. Each point in this figure
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represents the value of importance given by
Fisher’s criterion to the corresponding feature.

Figure 3: Fisher’s discriminant ratio cost function in
terms of the feature set.

After applying the FDR, 80 features with
less than 50% correlation between them were
selected. Then, this number was further
reduced by removing one feature at a time and
performing the classification. Since the accuracy
achieved using all 80 features and the 25th best
were the same, the number of selected features
was reduced to 25.

Figure 4 shows the number of selected features
for each phase. The maximum absolute values
were selected only for voltages and the root
mean squares for currents. The fourth-order
cumulants were selected from phases A and
B of the current signals and from phase B of
the voltage signals. The third-order cumulants
were selected from all phases of the current
and phases A, B and C of the voltage. The
second-order cumulants were selected from all
phases of the voltage signals. This shows that
all phases are important and that the use of both
current and voltage signals is not redundant as
all of them contributed to the classification task,
according to both selection criteria used (FDR
and linear correlation).

The number of features extracted from phase
Z is smaller than the others because not all
faults include the ground. The feature selection
method succeeded in capturing this information
from the data.

Observing the results shown in Figure 4, it is

Figure 4: Amount of selected features for each phase.

possible to note that the RMS value is significant
for all phases of current, except phase Z, it
is due to the fact that the RMS value of the
currents could increase significantly during the
fault in the faulty phase. For the voltage signals,
the Maximum Absolute Value (MVA) shows to
be significant for all phases, including phase Z
that could be justified by the fact that the MVA
will decrease in faulty phases due to a voltage
unbalance affecting all phases, including phase
Z. Also, it can be observed that the at least one
type of cumulant is extracted from each phase,
except for phase Z, which is interesting to make
the classification system more robust to noise.

To check whether the cumulants provide
useful information regarding the presence of
faults, the sample distribution of a cumulant was
approximated by a Gaussian distribution using
Parzen windows (PARZEN, 1962), as shown in
Figure 5. These cumulants were extracted from
phase C of the current signal. The distributions
of the classes containing phase C are located to
the left, while the others are located to the right
showing a certain distinction of fault C from the
others.

Figure 6 shows the feature space generated by
the three best-selected features (C1, C2 and C3)
for different quantities of postfault data. With
one cycle duration of postfault, there is a linear
separation among the classes. Using at least 1⁄8
cycles we still have a good separation among
classes. In other cases, the overlaps become more
evident. Nevertheless, when all 25 features were
used, the classifier showed good results in all
cases.
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Figure 5: Probability density estimation of the
cumulants extracted from phase C of the voltage
signal.

Figure 6: Feature spaces for the considered classes
built by the three most relevant features considering
different postfault signal length (1, 1/2, 1/4, 1/8, 1/16
and 1/32 cycles.

Classification

To validate the classifier, the k-fold
cross-validation with 10 divisions has been
used considering the design data set. Fig 7
presents the boxplot of the achieved accuracies
for different postfault values in the window
segmented by the detector, in terms of
percentage, considering the 10 folds. To evaluate

the performance of the proposed method for
reduced postfault windows length, we varied
them from 1 to 1/32 cycles of the fundamental
component. It obtained 100% accuracy for 1⁄2
and 1⁄8 postfault cycles, 99.78% for 1, 1⁄4 and 1⁄16

postfault cycles and 97.66% for 1⁄32 postfault
cycles.

Figure 7: Influence of the number of postfault
cycles used on the model’s accuracy (10-fold
cross-validation).

Fig 8 shows the confusion matrix for the
detector configured with 1⁄32 of porstfalt cycles,
considering the testing data set, which consisted
of 30% of the data. Note that for single-phase
faults and AC and ABT faults the classification
result was 100%. The remaining faults presented
hit percentages between 96% and 97%.

Figure 8: Confusion matrix obtained from a test
set made with 30% of the available data (randomly
selected).
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Table 4: Projects comparison.

Scheme Processing technique Classification method Data window SNR Accuracy
Proposed HOS, FDR and Pearson’s coefficient Artificial neural network (MLP) 1⁄32 cycle 60 dB 97.66%

Yadav and Swetapadma (2015) Wavelet transform Linear discriminant analysis 1⁄4 cycle Not informed 100%
Chatterjee and Debnath (2020) Cross correlation and Butterworth filter Fuzzy inference system 1⁄2 cycle 20-40 dB 99.34%

Fathabadi (2016) Finite impulse response filter Support vector machine 1 cycle Not informed 100%
Swetapadma and Yadav (2016) Discrete Fourier Transform Naive Bayes Classifier Not informed Not informed 99.99%

Mishra, Yadav, and Pazoki (2018) Singular value decomposition and S-transform Bagged tree ensemble classifier 1⁄2 cycle 20-40 dB 100%

Table 4 shows the characteristics and accuracy
of current methods that were developed in the
area of fault classification. Although these
methods were not replicated with the same
database described in this paper, analyzing
their results, it is possible to verify that the
proposed method is the only one that can
obtain good accuracy even though it uses less
fault information (1⁄32 postfault cycles). The
results when using more fault information (1,
1⁄2, 1⁄4, 1⁄8 and 1⁄16 post fault cycles) are similar to
what is found in the literature. However, the
proposed method takes advantage of being more
suitable for real-time processing and protection
purposes, since it is able to process reduced
signal windows (with less postfault information)
with good performance. It is important to
emphasize that the main advantage of using
less samples than the other methods is the
capability of detecting the fault events and
tripping the relay faster. The usage of few
samples also contributes to the reducing of the
computational complexity making the proposed
method suitable to be implemented in real time
in a digital relay. Another point that differs the
proposed method from the others is the usage of
Higher-Order Statistics information as input to
the classifier. The others use only deterministic
information or cross-correlation, that are both
second-order statistic features.

CONCLUSION

This paper proposed a classification method
based on higher-order statistics that uses only
1⁄32 postfault cycle. In this sense, it was possible
to classify 10 fault types, including single-phase,
two-phase and three-phase faults. To reduce
the complexity of the classifier, an Euclidean
distance-based detector was implemented.

It should be mentioned that the third- and
fourth-order cumulants, used as input to the
classifier, are less sensitive to Gaussian noise,
which gives the method robustness.

Despite the proposed method has not yet been
tested in real fault situations, the experiments
made via simulated signals were built to imitate
real situations, since we have considered the
most important characteristics, and statistical
tests were carried out by considering realistic
variations in the fault parameters. One of
the disadvantages of the proposed classification
method is that it requires a training stage that
depends on the available data set. However,
as the focus of the work is on transmission
systems, which are usually well documented,
it is possible to perform realistic simulations to
generate a complete data set for training. For
future works, the authors intend to implement
the method in a Field-programmable gate array
(FPGA) hardware to evaluate the performance
of the method in a real-time configuration. In
addition, we intend to build a visual interface
via LabVIEW software to communicate with the
FPGA systems for monitoring purposes.
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