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Abstract: Imagery from sensors embedded in satellites enables low-cost crop analysis and has been
the subject of correlation studies between vegetation indices and productivity. Vegetation
indices obtained from orbital platforms and crop maps have been important tools in the
context of popularizing precision agriculture. However, there are many factors that affect
maize yields and the resulting harvest maps. As a result, correlations between vegetation
indices and yields are not always obtained. This leaves a gap for methodologies to identify
areas of non-correlation and investigate the possible causes in a targeted manner. The aim of
this study was to use freely available satellite images, together with yield data from a maize
harvester, to identify regions with and without a correlation between yields and vegetation
indices. In areas with correlation, a linear model of yield as a function of NDVI was obtained.
A map of discrepancies was calculated, in which most of the crop was correlated, with
yields varying by around 2 Mg ha−1 in relation to the model. Areas with discrepant yields
were identified, both negatively and positively in relation to the model, enabling a localized
investigation into the possible causes of the phenomenon and crop management.
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INTRODUCTION

Sustainable production is one of the
biggest challenges in agriculture, whether
in environmental, social or economic terms
(BASSO; ANTLE, 2020; NEVES; IMPERADOR,
2022). With the growing demand for food,
it is understood that technological advances
in production areas increase productivity
gains, reducing the environmental impacts of
agricultural expansion (PATRÍCIO; RIEDER,
2018; TILMAN et al., 2011). This requires
the development of technologies that help
make decisions in a precise and agile manner,
demanding a clear set of information that

portrays the reality of the agricultural
environment, from sowing to harvesting. In
this context, Precision Agriculture (PA) is a set
of technologies that allow crop management
at strategic points, since productivity can
vary spatially and temporally, reducing input
costs and increasing sustainability (GEBBERS;
ADAMCHUK, 2010; KENDALL et al., 2022;
WHELAN; MCBRATNEY, 2000).

Maize (Zea Mays L.) is an important crop
distributed in several countries around the world
and is used both as a source of food and as a raw
material for industry, such as in the production
of corn ethanol, which has been growing in
Brazil (YANG et al., 2021; COLUSSI et al., 2023).
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The country is currently the world’s third largest
producer and the current scenario is optimistic
for producers (COÊLHO, 2023; HUANG, 2021).
Maize yield is influenced by several factors, such
as climatic conditions, biological conditions and
soil fertility, as well as the quality and genetic
adaptability of the plants (ARAÚJO et al., 2016;
SHARMA et al., 2022; WADE et al., 2020). In
addition, pest attacks can lead to a total loss of
production (TIMBÓ; MENEZES; LIMA, 2023).
Vegetative vigor, i.e. the ability of plants to
grow and develop, is also an important indicator
of productivity. Assessing vegetative vigor is
a challenge, as plants may only show visible
differences at advanced stages of development.
Traditional assessment techniques, such as
counting leaves or measuring plant height,
require field research and are laborious as well
as subjective (BERTOLIN et al., 2017). The
multisensor approach on an orbital platform has
been widely used in studies aimed at quantifying
biophysical indices and monitoring vegetation
(SANTOS et al., 2020), enabling the study of the
correlation between these indices and grain yield
(HENRIQUES et al., 2021).

In view of the countless advantages offered
by advances in Precision Agriculture in grain
harvesting operations, many producers have
opted to purchase machines that already come
with a complete package of computerized
resources to monitor the mechanisms that
integrate the machine. In grain harvesters,
flow sensors or load cells measure the mass
of grain that passes through the grain elevator,
which takes it from the tracks to the bulk
tank (ALBARENQUE; VÉLEZ, 2011). This
equipment, coupled with positioning systems,
generates the yield map. This mapping is
one of the main sources of information for
precision agriculture (MICHELAN; SOUZA;
URIBE-OPAZO, 2007). In terms of production
factors, it is the most complete information
for visualizing the spatial variability of crops
(MOLIN, 2002).

In many cases, the relationship between
vegetation indices and productivity shows a low
correlation due to factors that go beyond the
spectral response captured by remote sensing
indices. In addition, yield data from harvesters
is subject to errors caused by the machine’s

own automated yield measurement system
(MENEGATTI; MOLIN, 2004; MICHELAN;
SOUZA; URIBE-OPAZO, 2007). Therefore,
determining zones where vegetation indices and
yields are discrepant allows for a localized
investigation of variability and the occurrence of
phenomena in the area or on the equipment that
affect production.

The aim of this study is to evaluate
the correlation between vegetation indices
calculated from satellite images and the spatial
distribution of maize yield, defining areas with
or without correlation and thus producing
a map of discrepancies in order to identify
areas of the crop with yields that differ from
what was expected for its vegetative vigor.
The objective of this study is to propose and
evaluate a methodology for determining the
map of discrepancies, providing support for
investigations into the causes of lower or higher
than expected yields in maize crop.

MATERIAL AND METHODS

Study area characterization

This study was performed in the municipality
of Cruzília, in the southern region of the state
of Minas Gerais, in a field located at 21°40’30"
south latitude and 44°45’54" west longitude.
Figure 1 shows the location of the perimeter
studied in Cruzília, Minas Gerais, in natural
RGB composition from the Sentinel-2 satellite
imagery. The area under study, known as the
Mata da Fazenda Cachoeira field, is approximately
52.2 ha in size and the maize variety used
was Pionner’s 30F53 VYHR. Elevation in the
area varied approximately between 1012 m
and 1097 m. In a study carried out by
Sá Júnior et al. (2012), the climate class is
Cwb (humid temperate climate with dry winter
and moderately hot summer) according to the
Köppen climate classification. There is minimal
climate data available in the neighborhood.
According to information obtained from the
HIDROWEB (ANA, 2023) rain gauge station
of the Instituto Mineiro de Gestão das Águas
(IGAM-MG), located 37 km away in the
municipality of Aiuruoca, the average annual
rainfall was 1425 mm in the period 1990-2020.
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Figure 1: Study area location using natural composition RGB 10 m imagery from the Sentinel-2 satellite.

Harvesting in the area began on April 5, 2021 and
ended on April 29, 2021. Productivity data was
recorded by the John Deere model S760 grain
harvester, with 325 hp of nominal power and
10600 L of bulk capacity. Work and performance
information is shown in Table 1.

Table 1: Operational variables of the John Deere S760
harvester (1 Mg = 1000 kg).

Variable Values
Area Harvested 52.2 ha

Net Yield 11.3 Mg ha−1

Net weight 590 Mg
Moisture 19%

Gross Yield 11.9 Mg ha−1

Gross Weight 619 Mg
Speed 3.3 km h−1

Productivity 1.7 ha h−1

Working Time 30 h 36 min
Total Fuel 1289 L

Yield (Dry) 19.3 Mg h−1

Yield (Wet) 20237.2 kg h−1

Fuel Efficiency 0.5 Mg L−1

Fuel 24.6 L ha−1

Fuel 42 L h−1

Harvest data and yield map

The harvester machine John Deere had
to be coupled with the precision agriculture
technology package and, when harvesting
began, the operator had to fill in the data for

the operation, i.e. crop, seed variety, name of
the owner, farm and plot. The harvester has
several sensors that need to be calibrated. The
scale sensor which registers the mass of grain
entering the machine is very sensitive, and some
factors can alter the result generated in the
yield maps, such as the shaking of the ground,
the vibration generated by the sieves, among
others. Calibrating the harvester’s scales is a
difficult and time-consuming job, so John Deere
software provides calibration after harvest.
Post-calibration can be carried out using the
productivity obtained from a field that actually
arrived at the storage unit. After harvesting, the
information was collected using a USB pendrive
and inserted into the software for calibration
and export the geographic database in shapefile
format.

The point vector data obtained by the
precision agriculture system includes a geodesic
coordinate system, geometry and attributes. The
attributes used were productivity in Mg ha−1

and moisture on a wet basis given as a
percentage. The productivity (P) of each
point was corrected to 13% wet basis moisture
according to Equation 1. The correction is
necessary because the grain moisture in the field
is variable. The value of 13% is adopted because
this is a desirable humidity for safe storage.
Grains with high humidity lose mass during
drying, therefore Equation 1 allows determining
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the productivity value when the grains reach
13% humidity on a wet basis.

P(13%) = P
100 − Moisture (%)

100 − 13
(1)

The yield points are recorded every
approximately 1 m as the harvester moves
forward and represent what has been harvested
in an area the width of the harvesting platform
by the distance traveled. For the analysis,
this spatial points needs to be transformed
into raster data using an appropriate process.
The points were transformed into pixels using
the rasterize function in the terra package
(HIJMANS et al., 2023). Applying this function
requires the creation of a base raster with the
desired size and resolution. A base raster
(without values) was created for the extent of the
crop, with 10

32 m resolution and the rasterize
function was applied to the spatial points,
informing the attribute (YIELD) to be rasterized,
as shown in Figure 2. This resolution was
adopted in order to promote good precision
in the positioning of pixels in relation to their
original points. Furthermore, as the raster must
have the same extension and resolution as the
NDVI for the regression to be possible, the
base raster was created by dividing the 10 m
resolution by a fixed factor, in this case 32. This
makes it possible to aggregate the raster with
factor = 32 to result in 10 m resolution. In the
same way, when aggregating with a factor of
96, a resolution of 30 m is obtained to be used
with the Landsat-8 data. The mean function is
applied so that if there are two or more yield
points within a pixel, the pixel is composed of
the average of these points. The raster obtained
was then used to apply the focal function of the
terra 1.7.29 package (HIJMANS et al., 2023).
This function calculates values for each cell
using a statistic of the neighborhood contained
in a weight matrix, called moving window.
A 3x3 cross-shaped matrix with weight 1 (see
Figure 2) was used to compute the neighborhood
values of the yield pixels. The cross format of the
matrix was adopted so that during the passage
of the "moving window", pixels in the diagonal
directions of the cell’s neighborhood would not
be used. Therefore, only perpendicular pixels
are used in the focal computation because they

are the closest neighbors. When more than one
value is obtained within the moving window,
the fun=mean argument allows these values to be
averaged to compute the cell value. By applying
the focal function multiple times, the space
between the yield pixels is filled by the nearest
neighbor or the average of the nearest neighbors.
As shown in Figure 2, the focal function was
applied using the arguments na.rm=TRUE to
remove NA values from the focal computation
and na.policy=’only’ to insert values only
in NA cells. We adopted 25 repetitions in the
iteration structure, but the minimum value
required may vary depending on the maximum
distance between the points. The raster was
aggregated with the aggregate function from
the terra package for 10 m and 30 m by average.
Figure 3 illustrates in a simplified way the
process of preparing the harvest map, starting
with the vector data (points) (Figure 3a) followed
by its rasterization into a base raster (Figure 3b).
The focal function applied several times fills the
empty spaces by averaging the values of the
cross-shaped moving window (Figure 3c). After
applying the aggreggate function, the pixels
are aggregated to 10 m spatial resolution by
averaging their values (Figure 3d).

Rast <- rasterize(Prod , raster_base ,
"YIELD", fun=mean)

w <- matrix(
data=c(NA, 1, NA,

1, 1, 1,
NA , 1, NA),

nrow=3, ncol=3) #Moving window

for(i in 1:25) {
Rast <- focal(Rast , w,
fun=mean , na.rm=TRUE ,
pad=TRUE ,
na.policy=’only’)
}

Rast10m <- aggregate(
Rast , fun="mean", fact = 32) #To 10 m
Rast30m <- aggregate(
Rast , fun="mean", fact = 96) #To 30 m

Figure 2: Example of code chunk with functions used
in the R console to create thematic yield map.
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Figure 3: Harvest map preparation process. Pixel
colors refer to attribute values of maize yield in the
field.

Vegetation indices

Surface reflectance images of the study area
were obtained on January 31, 2021 from the
Sentinel-2 (ESA, 2023) satellite and February 4,
2021 from the Landsat-8 (USGS, 2023) satellite
acquired from the Copernicus Open Access Hub
and Earth Explorer portal, respectively. The
images were selected with acquisition dates close
to and before the harvest, which began on April
5, 2021. The Sentinel-2 satellite images have
10 m spatial resolution for the Red and NIR
bands and 20 m for the Red Edge 2 band, while
the Landsat-8 satellite images have 30 m spatial
resolution. All image processing was performed
in the R environment.

The NDVI vegetation index (Normalized
Difference Vegetation Index) (Equation 2)
(ROUSE et al., 1973) and the NDRE index
(Normalized Difference Red Edge Vegetation
Index) (GITELSON; MERZLYAK, 1994) were
used. Both indices were calculated for Sentinel-2
satellite data and only NDVI for Landsat satellite
data. The Sentinel-2 satellite provides four red
edge bands at different wavelengths. The NDRE
was obtained using the same equation as the
NDVI, replacing the Red band (B04 - 665 nm)
with Red Edge 2 (B06 - 740 nm), resampled to
10 m resolution by bilinear interpolation for the
calculation (Equation 3).

NDVI =
ρnir − ρred
ρnir + ρred

(2)

NDRE =
ρnir − ρred edge

ρnir + ρred edge
(3)

Correlation and discrepancy analyses

A visual representation of the vegetation
indices and the harvest raster was obtained for
the visual correlation analysis using the stars
package (PEBESMA, 2022) in R. The same color
palette and scientific geovisualization techniques
were used to visually identify areas with a
correlation between the vegetation indices and
yield.

Five polygons were delimited in areas that
showed the greatest visual correlation between
NDVI and yield. The maize grain yield raster
and the NDVI raster were masked by the five
polygons. This resulted in a linear regression of
productivity as a function of NDVI in the areas
delimited by the five polygons.

The equation obtained from the linear model
was used to generate a map estimating yield
as a function of NDVI. Using map algebra, the
difference between productivity and the estimate
map was calculated. The resulting raster was
represented so that the areas with positive and
negative yield discrepancies could be seen.

RESULTS AND DISCUSSION

Vegetation indices and harvest map

The NDVI indices from the Sentinel-2 and
Landsat-8 satellites are shown in Figure 4.
Both indices showed a very similar spatial
distribution in the area, except for the greater
detail provided by the 10-meter spatial
resolution of Sentinel-2. In the case of the
NDRE (Figure 4), despite being represented
with 10 meters of spatial resolution, the result
is derived from a band with 20 meters of
resolution. Because the Sentinel-2 RedEdge
band has 20 meters of resolution, it had to be
resampled to 10 meters. This resulted in a loss
of detail in relation to the NDVI calculated with
the native 10 m bands. As for the NDVI from
Landsat-8, we observed variability in the area,
but with a certain limitation imposed by the
spatial resolution.
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Figure 4: Vegetation indices and yield maps of mechanical maize harvesting using precision agriculture
techniques (Mg ha−1).

Delineating correlation polygons

Figure 5 shows the polygons delimited on
the harvest map, in areas where we observed
a visual correlation between productivity
and vegetation indices. Each polygon is
approximately half a hectare in size and has been
arranged to cover all the maize fields. The linear
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Figure 5: Spatial polygons defined on the yield map
for statistical modeling.

regression fits of yield as a function of NDVI
for data from two satellites are shown in Figure
6. The correlation was strong for Sentinel-2 and
moderate for Landsat-8, with determination
coefficients (R2) of 0.708 and 0.590, respectively.
Some areas showed a clear relationship between
increases and decreases in yield as a function of

NDVI, while in others there was no relationship
at all. Studies involving the correlation between
vegetation indices and maize yield show quite
varied results. This is due to the fact that many
factors can interfere yield in addition to green
biomass, such as plant nutrition conditions,
pest attacks and the consumption of produce
by local fauna. In the case of maize safrinha
(off-season), there is greater susceptibility to
attack by pests compared to the first crop (safra),
mainly due to climatic conditions. It should
be noted that maize is attacked by pests and
diseases throughout the entire development
period, from sowing to harvest (WORDELL
FILHO et al., 2016). Attack on grains is a major
cause of production losses (PICANÇO et al.,
2003). Therefore, the possibility of losses due
to pest attacks in the reproductive phase of the
crop should be considered, at times after the
images have been acquired. Another source of
discrepancies is the errors inherent in the data
collected by the harvesters’ automated systems
(MENEGATTI; MOLIN, 2004).

The strong correlation obtained within the
delimited polygons shows that vegetation
indices do indeed influence yields. The best
results for the data from the Sentinel-2 satellite
are largely due to the 10-meter spatial resolution,
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Figure 6: Linear regression of NDVI as a function of yield (Mg ha−1) in the spatial polygons used in the
modeling (showed on Figure 5).

providing greater detail of the area compared
to Landsat-8. Especially when you consider the
fact that the area is relatively small and located
in a region with more rugged terrain, where
spatial variations in climatic and soil attributes
tend to be greater. It is known that in general
the temperature varies linearly by -0.6ºC with an
increase of 100 meters in altitude (HIRASUGA;
LEUNG, 2019) and that soil attributes vary both
horizontally and vertically (RICHTER et al.,
2011).

Implementing the model and
discrepancy map

The green areas in Figure 7 represent those
where the difference between the yield and
the NDVI-based model was between -2 and
2 Mg ha−1. In light blue to purple are the
areas where the yield was considerably higher
than the model. Yellow to red are the areas
where the yield recorded was considerably lower
than the model. Some areas showed visible
discrepancies, while most of the area followed
the model. The mean discrepancy in the area
was 0.80 Mg ha−1 positive, while 75% of the
values were between -1.15 and 1.97 Mg ha−1

(Table 2). The standard deviation was 3.10
Mg ha−1. In the discrepancy map (Figure
7), most of the area followed the model, but

Table 2: Summary statistics for variations between
yield measured in the field and determined by
modeling.

Summary statistics values (Mg ha−1)
Min. -9.414

1st Qu. -1.154
Median 0.370
Mean 0.796

3rd Qu. 1.973
Max. 30.242
SD 3.102

NA’s 8600

certain discrepant zones and points scattered
throughout the crop meant that the level of
correlation was greatly reduced. Analysis of
the map obtained allows us to investigate areas
of positive and negative divergence, providing
information to determine possible causes of
variability and possible corrective actions.

Yields above the model were found at the
edges along much of the area’s perimeter. One
of the possible causes of the edge effect may be
related to the spatial resolution of the satellite
images which, because they cover a larger area,
end up capturing effects from zones outside the
area actually cultivated. The presence of tracks in
the middle of the field can cause the same effect.
Regions with yields lower than the model should
be investigated by the producer to determine the
causes of the low yields, which are not always
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Figure 7: Variation between yield measured and determined by modeling (Mg ha−1).

related to the vegetative vigor reported by the
vegetation indices. As an example, planting
failures and plant mortality can be hidden after
plant growth by the NDVI index.

CONCLUSIONS

A methodology was developed to analyze
yield maps determined in situ and assess their
accuracy according to satellite crop monitoring
data from a crop management perspective.

The spatial variability of NDVI and yield
was visualized with the data collected in the
maize field. We identified areas in the field with
a strong correlation between maize yield and
NDVI and specific locations where there was no
correlation.

The NDVI index from Sentinel-2, with 10
meters of spatial resolution, performed better
at capturing variability than the 30-meter NDVI
from Sentinel-2 and the NDRE calculated from
20-meter spatial resolution data from Sentinel-2.

Using the model applied to produce the
discrepancy map enabled to identify areas with
divergent values in which factors other than
vegetative vigor captured by NDVI affected
the area, as well as the incidence of errors in
the harvest data, providing information for the
producer to act in a localized manner.

Further studies are needed to apply the
method to different production areas and
crop phenological stages, combined with field
research and climate data in order to identify
causes of discrepancies.
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