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Abstract: In this work, we propose a methodology for mapping coffee crops using Sentinel-2 data and
Random Forest (RF) classification, focusing on improving accuracy in regions outside the
training area. We evaluate the ability of the model to generalize to the same biome, testing its
performance in spatially distinct areas near the municipality of Lavras, MG, Brazil. During
the experiments, we develop a new technique called spatial coherence, which incorporates
information from neighboring pixels into the classification process to reduce salt-and-pepper
(isolated) errors. This approach improves traditional RF classification by combining spectral
data with spatial context, resulting in more accurate and contiguous coffee crop maps. Our
methodology, implemented in R using Sentinel-2 imagery from June 2022, demonstrates the
potential to bridge the gap between academic studies and practical large-scale mapping of
coffee plantations.
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INTRODUCTION

The coffee sector is a significant part in
Brazil’s economy. Keeping track of coffee
plantations and how it changes over time
is useful for establishing public policies and
understanding how the sector responds to them,
similar to what is been done with deforestation
(FINER et al., 2018). Satellite remote sensing data
have been used to map coffee plantations and
could play a major role in mapping coffee over
vast areas and it has been done with reported
high accuracy, despite its many challenges.
However, accurate, up to date maps are not easy
to find, as there seems to be a gap between
academic classifications and practical mapping.

A practical problem in crop mapping using
supervised machine learning is that training
is often done on sampled data from the
classification data. Such methodology is
impractical because it requires that manual
classification from experts and sampling to be
tightly coupled, which is hard to do in large

areas. We used all data (no sampling) from
a manual classification to generate a Random
Forest classification model that is used for
classification on a different area (data set).

Random Forest classification (BREIMAN,
2001) is very robust for large number of samples
and require little to no parameter configuration
(SHI; YANG, 2016). It is often used for
land use/land cover classification and it has
been used before to map coffee (CHEMURA;
MUTANGA, 2017; KELLEY; PITCHER; BACON,
2018; BOURGOIN et al., 2020) under different
conditions, usually classifying very distinct
classes such as water bodies, urban areas, bare
soil, and a few distinct crops. Using distinct
classes from a spectral point of view, tends to
produce good accuracy, but we wanted to test
it in coffee mapping. Instead of differentiating
coffee from very distinct other land cover, we
wanted it to find coffee crops. However, since
there are different coffee growing systems with
distinct spectral signatures, coffee is often more
than just one class, so we also wanted a system
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that is able to identify more than one coffee class.
Random Forest is a pixel-based classification

algorithm and as such, it is prone to produce
a noisy classification with salt-and-pepper error,
that is, false positives and false negatives, that
appear isolated in the classification area. Since
crops usually extend in relatively large areas,
isolated pixels have a high probability of being
errors. Data used in this work had a spatial
resolution of 10m and a coffee patch of 100m2

is considered unlikely. Since Random Forest
is a machine learning algorithm, we "taught
it" to take in consideration the classification
of neighbor pixels, therefore reducing the
probability of producing small patches in the
final classification, and we call this novel feature
spatial coherence.

This work goes beyond just classifying pixels,
it requires less expert effort in generating the
classification model while also producing a map
that is more object-based than usual output from
Random Forest classification.

MATERIALS AND METHODS

We used freely available data from Sentinel-2
together with classification polygons for training
and Random Forest classification. Classification
polygons that demarcate coffee plantations
kindly provided to us from previous mappings
from EMATER/EPAMIG projects in form of a
shapefile (.shp, .prj, .shx ... files). This data
used to be available from Geoportal do Café1.
Since the classification polygons were 3 years
old, polygons in the area of interest were verified
and modified by experts were inconsistencies
were found.

Sentinel-2 Data

The experiments reported here used data
from Sentinel-2 MSI instrument, tile 23KMS,
recorded on June 25, 2022. The tile is almost
free of clouds and only areas free of clouds
within it were used. The data is near the
city of Lavras, MG, Brazil, and contains many
coffee plantations. Coffee mapping was made by
classification using random forests algorithm.

1https://portaldocafedeminas.emater.mg.gov.br/

Tools used

Classification polygons were verified
manually against CBERS-4A satellite images
(pan-sharpened 2m resolution from June 2022)
using QGIS. Images from Google Maps were
eventually used in the verification process of
less identifiable crops because they had higher
resolution than the pan-sharpened images, even
though the exact date and resolution of images
in Google Maps were undisclosed. Google
Maps was accessed during the months of July to
December, in 2022.

Processing (training and classification) was
done using R language version 4.2.2, Terra
library version 1.7.3 (for geographic raster and
vector processing) and ranger library version
0.14.1 (random forests implementation).

Study area and Data

Four manually classified regions were
produced for the experiments, with extents
in WGS 84/UTM zone 23S being:

• training region 1 (TR1): 486700 to 492624 x,
7650110 to 7652390 y (1430.7 ha);

• training region 2 (TR2): 498534 to 500530 x,
7646218 to 7647919 y (363.8 ha);

• training region 3 (TR3): 500298 to 502017 x,
7657617 to 7659499 y (333.2 ha);

• classification region (CR): 504138 to 509636 x,
7648014 to 7650800 y (1587.8 ha).

These regions are around the urban area of
Lavras (Figure 1). Some coffee plantations were
difficult to verify over satellite images because
the plants were too small or had few leaves.
We expected these plantations to share little
characteristics with other areas, so they were
marked as a different class of coffee (Figure 2).
11 months later, these classes were confirmed
to be coffee plantations using new satellite
images. When mapping coffee, is usually useful
to have classification of more than one class,
because properties change a lot over the year
and different kinds of coffee systems are likely
to appear on classification (ESCOBAR-LÓPEZ et
al., 2022).

2 THEORETICAL AND APPLIED ENGINEERING - UFLA - LAVRAS - V9 - N3 - 2025 - P. 1-10

https://doi.org/10.31422/taae.v9i3.64

https://portaldocafedeminas.emater.mg.gov.br/


Coffee mapping using Sentinel-2 data and spatial coherence
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Figure 1: Study areas in the city of Lavras shown
over the Sentinel-2 RGB data used. Three training
regions (TR1, TR2 & TR3) were used as input data for
the creating of Random Forest classification models,
while the classification region (CR) was used to
validate the models results.

Figure 2: CBERS-4A pan sharpened image (June 21,
2022) showing coffee plantation polygons of both
coffee classes: class 1 (hashed yellow) where coffee
canopies were not observable in manual classification;
class 2 (green) where canopies are visible.
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Figure 3: Vegetation indices for the two coffee classes

Coffee polygons contain noise such as big
trees inside the plantation, their shadows and
farm tracks. They were left as is, for a more
practical experiment on coffee mapping than
using only pure pixels samples.

We tested Normalized Difference Vegetation
Index (NDVI) and Normalized Difference Water
Index (NDWI) vegetation indices on both coffee
classes to confirm they would be distinct in the
data (Figure 3).

Manual classification

Experts validated and updated coffee
classification results from other’s previous work
by drawing coffee their crop polygons over
most recent cloudless CBERS-4A pan sharpened
images of the area. Then, the polygons were
edited in order to remove previous areas which
no longer were coffee crops, as well as add
new ones or carefully align crop border with
the satellite image where border precision
was deemed faulty. In a few cases where
the CBERS-4A spatial resolution was deemed
insufficient for manual classification, Google
Maps (higher resolution imagery) was used to
look at the area for decision making. QGIS was
used to edit crop polygons.

Road tracks, big trees and other noise found
inside coffee crops were left inside the coffee
polygons, unless they were on the border and
could be easily discarded.

Coffee polygons were labeled according to
coffee class (numbered 1 and 2). This vector
classification data was later converted to raster
data using Terra’s rasterize function.
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# Produce r a s t e r c l a s s i f i c a t i o n data from polygons , using r e s o l u t i o n and
# e x t e n t from band 2 , where p i x e l values come from " Class " f i e l d and
# p i x e l s outs ide polygons get a value of zero .
r a s t e r C l a s s e s <− r a s t e r i z e ( polygons , band2 , f i e l d =" Class " , background =0)

# Group r a s t e r c l a s s i f i c a t i o n data with other r a s t e r input data
t ra inData <− c ( r a s t e r C l a s s e s , bands , i n d i c e s )

# Create c l a s s i f i c a t i o n model
model <− ranger ( formula , data=trainData , importance=" impurity " ,

c l a s s i f i c a t i o n =TRUE)

Figure 4: Creation of a classification model using
ranger library, where formula is a control string
defining input and output labels, trainData is
the multidimensional labeled raster data from
satellite bands, vegetation indices, classification and
neighborhood (if available).

Classifier model creation

Using the ranger library, labeled data is used
to create a classification model (Figure 4). This
process could also be described as training the
classifier. After a model has been build, it is used
for classification (Figure 5).

We created Random Forest classification
models using different sets of bands, including
the creation of vegetation indices and our new
neighborhood data. Classification was done in
the classification region except for confirmation
of the out of bag error (OOB error) which is
an error measurement for the Random Forest
algorithm. Accuracy measurements in this work
are always producer accuracy, as opposed to user
accuracy.

Due to the cost of creating a manual
classification, which is needed for training and
for computing the accuracy of results, small
regions of the multi spectral data from Sentinel-2
were used. Using a localized subset of data
of training is considered a valid, effective
strategy for classification of geospatial data
using machine learning (RAMEZAN; WARNER;
MAXWELL, 2019). The training regions 2 and
3 were introduced later in our experiments as
a way to provide new, diverse samples and
also change proportion of samples of coffee/non
coffee classes used for training.

Traditional Random Forest
classification

In an initial experiment, the training region
1 was used to train a model for classification.

c l a s s i f i c a t i o n <− p r e d i c t ( model , data= c l a s s i f D a t a ,
type=" response " )

Figure 5: Classification of data using ranger library,
where model is the classification model created
previously and classifData is the multidimensional
labeled raster data from satellite bands, vegetation
indices and neighborhood (if available).

All pixels inside the polygons were used as
coffee plantation samples (2 classes of coffee),
all other pixels were used as “not coffee” class.
All 13 Sentinel-2 MSI spectral bands were used
in the training. The ranger library reported
an OOB error of 0.0311. To verify if this error
measurement would be consistent with overall
accuracy, a second experiment where nine tenths
of the pixels in the training region 1 were used
for training, while the remaining one tenth were
used for classification, resulting in an overall
accuracy of 96.9%, compatible with the OOB error
computed.

Since Random Forest was proving effective
in classifying coffee crops of distinct classes (as
well at "not coffee" class with everything else
in the region), we tested how well the classifier
model would perform classifying a region that
was distinct from the training region. So using
all samples from TR1, we classified all pixels in
the classification region (CR). This produced an
overall accuracy of 87.34%, which is significantly
worse, specially considering both regions were
in the same satellite image (relatively close to one
another).

Further experimentation was done in order to
see what would improve classification accuracy
in an area distinct from training, because we
consider this an important practical aspect of
crop mapping, which is usually not tackled in the
literature.

Removing less important bands

Some of the input data is not very relevant
for coffee classification. We wanted to test if
removing some bands available from Sentinel-2
data would improve classification.

Previous work may employ some
discriminant analysis such as Fisher’s
Discriminant Ratio (FDR) (BOELL et al.,
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Figure 6: Changes in accuracy when removing less
important bands. The y axis does not start at zero
to enhance the differences. The x axis is cumulative,
meaning that in each column, all bands removed
previously are still absent from data.

2018) or Principal Component Analysis (PCA)
and then use the high ranking data, while
the rest is discarded. As the independent
variables are ranked by importance in ranger’s
implementation of the Random Forest algorithm,
we used the importance value computed by it to
choose bands for removal from training, the idea
is that using less data would leave the algorithm
with more memory to work the most important
bands and would also reduce the noise that the
training algorithm has to deal with. Band 10
(SWIR/Cirrus 1.375µm) was ranked the less
important band in classification. Removing it
resulted in a marginal improvement in accuracy.
Further removing next less important bands did
not improve accuracy, as shown in Figure 6.

Adding samples of coffee classes to the
training

We used all pixels in training region for
training, instead of using a small sample as
usually done because we wanted to let the
classification manage the noise that naturally
occurs on crop delimitation for satellite images.
Noise includes crop borders, farm tracks inside
the crops, shadows from big trees and differences
in vigor of the actual coffee trees. Random Forest
is known for its robustness related to overfitting,
so a classification would benefit from a large
number of examples. Also, the non-coffee class is
very diverse, because we did not create distinct
classes for urban areas, rivers, lakes and other
vegetation covers.

Because the number of samples for non coffee
class was far greater then both coffee classes,

we experimented proportionally increasing the
number of coffee samples. To do so, all coffee
pixels from training regions 2 and 3 were added
to the training data. Increasing the number of
coffee samples had a significant improvement in
accuracy.

Adding vegetation indices to the
training

Vegetation indices are commonly used for
land cover classification, but since they are not
independent data, and are instead computed
from the bands already available for training,
there is always a discussion about its benefits.
We wanted to experiment if vegetation indices
would improve accuracy. We chose NDVI
and NDWI indices because the first is a well
established index and the latter is related to
water. Adding both indices to the training data
resulted in a marginal improvement in accuracy.

Spatial Coherence

Using more samples of coffee crops, adding
vegetation indices and removing the less
important bands provided a good increase in
accuracy. However, looking at a classification
result, it is clear that accuracy would benefit
form neighborhood information.

Neighborhood information is used in textural
classification, but we wanted to use in a
different way because textural classification
usually requires choosing good parameters and
is significantly more computation intensive.

A pixel is clearly less likely to be a sample of
coffee plantation if there are none or few coffee
pixels nearby. So we devised a way to make
this information avaliable to the Random Forest
classifier.

The polygons for coffee plantations were
rasterized, creating a raster image where there
are ones in coffee areas and zeroes elsewhere.
Because we had two classes for coffee, two
separate images were created, one for each
class. These images were then convoluted
(a focal operation was applied), so that each
pixel gets the sum of its neighbors, creating
information about how many nearby pixels are
also from the same coffee class. We used a
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5x5 pixel neighborhood, so that each pixel has
24 neighboors and its neighboorhood data is a
number from 0 to 24 that indicates how many of
its neighboors are coffee samples from the same
class. Each coffee class produces one layer of
neighborhood information.

The neighborhood information is clearly
beneficial to the classifier, but to use it for
classification one would need to know the
classification output before the classification. To
get around this problem, the classification was
done in two steps. In the first step, classification
is done without neighborhood information.
The resulting classification is deemed an
intermediary classification and used to create
neighborhood information. In the second step
training is done again (a second classification
model is created), this time using neighborhood
information. Then the classification is done
again, but using neighborhood information
from the intermediary classification (Figure
9). We called the second classification, a
classification with spatial coherence because of
the neighborhood knowledge it contains. The
classification done on the second step does not
contain the salt-and-pepper effect of single,
misclassified pixels, borders are more accurate
and holes inside plantations are smaller. Spatial
coherence creates an eroding effect on false
positives while having a dilating effect on false
negatives, as seen in Figure 7.

Neighborhood information may be used
in an iterative manner because subsequent
classifications tend to be better than the previous.
In our test region, accuracy increased from
92.4% to 94.3% with one iteration (adding
neighborhood information), and then to 94.4%
with two iterations (neighborhood updated –
see Figure 8). Such a marginal enhancement,
however, suggests that using it as an iterative
method may not be worth the extra computation
required. Figure 9 depicts a methodology
overview of the classification steps used in this
work.

Spatial coherence creates more continuous
areas, feasible for creation of polygons,
essentially producing results that look like
object-based classification.

RESULTS

Performing classification on the same
area produced the highest accuracy. The
loss of accuracy noticed when classifying
on a different area could be mitigated using
several techniques, including our novel spatial
coherence modification to the training data.
Random Forest classification has shown to be
very robust, using large amounts of training
samples, which simplify the sampling process
by including as many different samples as
possible. However, balancing the percentage of
coffee and non-coffee samples resulted in greater
accuracy improvements than any other tuning
strategy.

Removing bands form the training data is
very dependent on the training data, removing
a few of the less important bands, according
to the internal Random Forest importance, we
found that removing band 10 from training data
improved accuracy by 0.3%. After this initial
improvement, removing further bands in order
of importance, produced a slight decrease in
accuracy (Figure 6). In similar experimentation,
with different scenarios than reported here,
removing up to the 3rd less important band,
resulted in marginal classification improvement.

Removing further bands decreased accuracy.
Adding NDVI and NDWI bands accounted
for another 0.3% increase in accuracy.
Sentinel-2 Band 1 (Coastal aerosol 0.44µm)
was surprisingly ranked first in importance for
coffee mapping in every run.

Proportion of samples of different classes is
important in the accuracy. Increasing the number
of training samples from 16,605 (11.6% of all
samples) to 35,510 (21.9%) resulted in 4.74%
increase in overall accuracy and was the most
useful improvement for classification.

Our novel neighborhood data increased
accuracy in 1.9% for one iteration and 1.95% for
two iterations, creating mapped regions more
likely to be represented as coffee plantation
polygons.

The loss of accuracy observed for classifying
a region different from the training region could
be recovered by using the techniques described.
Table 1 is a summary of accuracy evolution as the
classification was enhanced.
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Figure 7: Effect of applying spatial coherence - red pixels were removed from coffee classes and blue pixels
were inserted.

Figure 8: Effect of second iteration of spatial coherence - red pixels were removed from coffee classes and blue
pixels were inserted.

Description Accuracy Difference
Training and classifying on Training Region 1, 13 bands 0.9694 –

Training on TR1, classifying on Classification Region, 13 bands 0.8734 -0.0960
Training on TR1, classifying on Classification Region, 12 bands 0.8760 +0.0026

Training on TR1 and TR2, classifying on Classification Region, 12 bands 0.8931 +0.0171
Training on TR1, TR2 and TR3, classifying on Classification Region 0.9234 +0.0303

Added NDVI and NDWI to data 0.9242 +0.0008
Added Neighborhood data 0.9429 +0.0187

Second iteration of neighborhood data 0.9437 +0.0008

Table 1: Timeline of classification accuracy.

THEORETICAL AND APPLIED ENGINEERING - UFLA - LAVRAS - V9 - N3 - 2025 - P. 1-10

https://doi.org/10.31422/taae.v9i3.64
7



SCHNEIDER, B.O. et al.

Sentinel-2
data (Jun 22) Manual Classification

CBERS-4A
data (Jun 22)

Google Maps
imagery

Classification Model 1

Classification Data 1
(without spatial coherence)

Neighborhood Data

Classification Model 2

Classification Data 2
(with spatial coherence)

Old mapping
data

P
ossible iteration

Figure 9: Methodology Overview

DISCUSSION

The decline in accuracy when classifying
distinct regions (from 96.9% to 87.3%) reveals
a critical limitation of machine learning models
in remote sensing: the contextual dependence
of training. Even in nearby areas within the
same biome, subtle variations in topography,
agricultural management, or coffee growth
stages can impact classification. Spatial
coherence mitigated this issue by incorporating
local geographic information, reducing errors
by 1.9%. This suggests that hybrid methods
(spectral + spatial) are essential for large-scale
applications. The accuracy of supervised
classification models can vary significantly when
applied to regions different from those used in
training, even when the areas are geographically
close and belong to the same satellite image.
This behavior has already been observed by
(MAXWELL; WARNER; FANG, 2018), who
highlights the challenges of spatial extrapolation
in machine learning-based classifications.

The integration of spatial and spectral
information represents a promising path in
enhancing classification accuracy. Forested
regions emerged as the primary source of false
positives in coffee classification as also noted by
others (SOUZA et al., 2016); however, a distinct

Figure 10: Coffee plantation (upper region, delimited
by a polygon) and forest (lower region) create distinct
shadow patterns on Sentinel-2 10m resolution images.

shadow pattern differentiates coffee plantations
from forested areas. This distinction arises from
the structured arrangement of coffee trees, as
illustrated in Figure 10. Future research should
further investigate this phenomenon to refine
classification methodologies and improve the
robustness of remote sensing applications in
agricultural mapping.

Spatial data is also used in textural
classification. It has been done for surface
texture, i.e. canopy height variation, using
SAR data (SILVA et al., 2009), and also done
for image texture, i.e. variation of intensity
in pixels (LELONG; THONG-CHANE, 2003;
TSAI; CHEN, 2017). SAR data has also been
used to identify forests (DOSTÁLOVÁ et al.,
2016). We think texture based methods still
need further work, as there are many non
trivial ways for representing texture in useful
ways for classification. It is also dependent on
image resolution, size of analyzed windows,
sun/shadow arrangements and land slope
(BAETA et al., 2017). Spatial information is also
behind object-based classification methods such
as done by Wang et al. (WANG et al., 2018).

Using Sentinel-2 data, the band 10 was
ranked less important for coffee classification.
Removing less important bands from training
should be done iteratively, as the importance
of the remaining bands may change on the
new model. We noticed that removing less
important bands quickly exhausts its benefits.
Removing one band was best for this work. We
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performed other classification tests with more
coffee classes that benefit from removing at
most three bands from the training data. Since
improvement was small it seems that the general
rule is that Random Forest classification benefits
from having more spectral bands. We have
no explanation for the consistent first place in
importance rank for band 1 and believe this
merits further investigation.

Band 1 (0.44 µm), typically used for
atmospheric correction, was the most relevant
in the classification. One hypothesis is that it
captures variations in moisture or atmospheric
particles associated with young coffee plants,
but further studies are needed to validate this
correlation.

Unlike studies that use pure samples
(ideal, carefully selected, data samples that
represent each category), this work incorporated
real-world noise such as tree shadows or trails,
into the training process. This made the model
more robust for practical applications, where
pure data is impractical to obtain for large scale
classification.

The use of all available samples for training,
including areas with noise such as trails and
shadows, proves to be a practical alternative in
large-scale mapping contexts. This approach
is supported by the robustness of the Random
Forest algorithm, which stands out for its ability
to handle intraclass variability and noisy data
(BELGIU; DRĂGUŢ, 2016).

The use of Sentinel-2 data, with its
adequate spatial resolution and multiple
spectral bands, has also proven to be an
effective basis for agricultural mapping, as
previously demonstrated by (IMMITZER;
VUOLO; ATZBERGER, 2016) in studies on
tree species identification. The importance of
balancing class proportions in training data
was once again verified in this work, aligning
with the methodological recommendations of
(RAMEZAN; WARNER; MAXWELL, 2019), who
emphasizes that sample balance and diversity
are key factors for the performance of classifiers
in studies using remote sensing data.

The final accuracy (94.4%) surpasses similar
studies (CHEMURA; MUTANGA, 2017),
(ESCOBAR-LÓPEZ et al., 2022), which achieved
89% and 91%, but direct comparison is limited

due to data heterogeneity. The addition of
vegetation indices (NDVI/NDWI) had little
impact, suggesting that the original Sentinel-2
bands already capture sufficient information for
coffee mapping.

CONCLUSION

Coffee mapping using Sentinel-2 data
and Random Forests classification algorithm
achieves a good accuracy, comparable with what
is been reported in the literature. Although
accuracy may vary significantly depending on
training data, classification may be fine tuned
using simple methodologies. The disadvantages
of pixel based classification may be mitigated
using spatial coherence in the training.
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