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Abstract: This paper analyzes the non-linear geometric behavior of reinforced concrete slender columns. This 
approach is due to the fact that there is a tendency to reinforced concrete slender constructions, 
which may have significant second order effects. This research aimed at comparing different 
formulations for the analysis of non-linear behavior of reinforced concrete slender columns by 
comparing results from simulated problem (slender column with ten load scenarios) between 
the Finite Element Method (FEM) and the Iterative Process P-DELTA(P-∆). Numeric results 
revealed that the Iterative Process P-∆ presented different results from FEM and that the second 
order effects are significant for reinforced concrete slender column problems.
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INTRODUCTION

In Brazil, as in many other countries, concrete 
plays an important role in construction, being 
the main and most consumed building material 
in the world. Two of the most developed 
and powerful societies, the United States and 
Canada, consider the investment in studies about 
concrete structures as one of the most important 
investments in science and technology to obtain 
and keep quality of life for their people and 
the leadership of their industrial parks (Helene 
and Andrade, 2010). According to NBR-6118 
(ABNT, 2014), concrete elements are those which 
structural behavior depends on the adherence 
between the concrete and the armor, and to 
which initial armor elongations are not applied 
before such adherence. 

The search for reinforced concrete slender 
constructions has boosted advancements in 
the area of structural engineering; one of these 
advancements is related to the study of non-linear 
behavior in structure. According to Delalibera 

et al. (2014), as slenderer the structure, greater 
is the need for analysis of second-order effects. 
According to Reis and Camotim (2012); Carvalho 
and Pinheiro (2013), column slenderness is 
defined by Equation 1.

where l is the slenderness ratio of the part with 
respect to axis x or y (columns are rated slender 
when l is higher than 90 and lower than 140); Le 
is the length of the buckling towards x or y and i 
is the radius of gyration on x or y. 

Peres, Penna and Pitangueira (2014) highlight 
that the development of Finite Element Method 
(FEM) among other methods for non-linear 
structure analysis is a viable and widely spread 
alternative which allows a lot of structures 
modeling from different materials affected by 
many requests and restrictions. According to 
Cook et al. (1974), in structural mechanics, non-
linearity may be classified as material, geometric, 
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or contact. The problems in these categories are 
non-linear because stiffness and other loads 
are functions of displacement or deformations. 
According to Carvalho and Pinheiro (2013), 
at the geometric analysis of a non-linearity 
structure, the purpose is to determine the 
internal actions, considering second order effects 
(deformed position). Second order effects arise 
from the geometric change in structures due to 
the incidence of external loads. According to 
Parente Junior et al. (2014), the geometric non-
linear analysis may be performed by using 
Lagragian or co-rotating formulations. 

According to Cook et al. (1974), for solving 
these kinds of structural problems, the use of 
FEM with an incremental-iterative process is 
an alternative, where the balance configuration 
of the structure is performed by an external 
load. Newton-Raphson algorithm is commonly 
used in modeled non-linear problems in finite 
elements. Alves Filho (2012) stated that Newton-
Raphson method is one of the most important 
methods to understand iterative strategies. Other 
numeric methods may be used in the process 
of computational implementation routine for a 
non-linear analysis such as: standard Newton-
Raphson method, modified Newton-Raphson 
method, Arc-Length Method, Elliptic Arc-Length 
technique, Spherical arc-length technique, 
cylindrical arc-length technique, linearized arc-
length technique, among others. 

According to Reis and Camotim (2012), 
another way to solve these problems is the 
use of Iterative Process P-DELTA(P-∆), where 
the equations are written based on the non-
deformed configuration of the structure and 
geometric non-linearity effects are incorporated 
indirectly and iteratively. In this kind of analysis, 
a non-linear problem is effectively solved by 
using successive linear problems. Delalibera et 
al. (2014) pointed out the importance using an 
analytical calculation process for second-order 
analyses in symmetrical and rectangular models 
without geometric alteration of pavements. 

FEM Background

FEM is a numeric technique for analyzing 
in approximate way the behavior of problems 
governed by physical phenomena that can be 

expressed in partial or ordinary differential 
equations. Belytschko and Fish (2009) states that 
many phenomena in engineering and science can 
be described in terms of differential equations. 
In general, solving these equations by means 
of classical analytical methods for irregular 
geometries is almost impossible. FEM is a 
numerical approximation tool using differential 
equations can be solved in an approximate way. 
An application of this method in Structural 
Engineering is the study of linear and nonlinear 
elastic behavior of structures by means of 
computer simulations. Clough (1960) was the 
first author to use the term Finite Elements. 
Turner et al. (1960) considered the effect of 
large deformations in the analysis of structures 
subjected to external loads and temperature 
effects. Archer (1965) expanded FEM approaches 
for dynamic analysis. Argyris and Kelsey (1960) 
presented fundamental principles of matrix 
analysis of structural methods, including the 
effects of temperatures and the consideration 
of a nonlinear relationship between stress-
deformation, clearly revealing the duality 
between the method of displacements and the 
method of loads.

According to Soriano (2009), FEM started 
from the arbitrary of simple laws (usually 
polynomial) for the primary dependent variables 
in subdomains called finite elements, replacing 
the exact laws of mathematical model solution 
(which are unknown) and to have continuity in 
the interfaces of elements, in most developments. 
These elements are interconnected by means 
of nodal points in their contours and since 
these laws are arbitrated as a function of 
nodal parameters, the infinite points of the 
continuous mathematical model are replaced 
by a finite number of points, which is called 
the discretization process of the continuous 
mathematical model. In a mathematical 
condition that ensures approximate solution 
that converges to the solution of the original 
mathematical model, while the elements size 
is reduced or the order of the laws arbitrated 
for variables is increased. This mathematical 
model, which is already approximate to the 
physical system, has its behavior determined 
with additional approximation through a FEM 
discrete model (Figure 1).
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In the Finite Element modeling, mesh 
construction is an extremely important step. This 
set of discrete elements interconnected bynodes 
can contribute and ensure good results for the 
simulations. A procedure of successive mesh 
refinement can ensure the convergence of the 
numerical solution to a correct result. Cook et 
al. (1974) and Brandão et al. (2009) presented 
methods of automatic refinement of finite 
element meshes, also called adaptive methods, 
trying to make errors distribution over the whole 
mesh.

According to Soriano and Lima (2003) and 
Soriano (2009), automatic mesh refinement, 
which is self-adaptive, is a function of a parameter 
or level convergence specified by the user. It is 
selective in order to act primarily in regions that 
lack refinement until an error of discretization is 
obtained evenly distributed in the entire mesh. 
These adaptive refinement strategies can be 
basically divided into three types: h, p and r. 
Cook et al. (1974) and Brandão et al. (2009) stated 
that p and h types refinements are different ways 
to increase the number of the model’s degree of 
freedom. In the h-type refinement, the degree 
of the polynomials used (same type of element) 
is not changed, the refinement is performed by 

the division from mesh discrete elements. In the 
p-type refinement, there is an increase in the 
degree (p) of the polynomial seeking to enrich 
the solution space. Another refinement form is 
the r-type, where refinement is accomplished 
by repositioning nodal points of the mesh, 
thus improving the distribution of errors. For 
Soriano (2009), the combination of p and h types 
refinements is called the hp-type refinement. For 
Szabo and Babuâška (1991), the convergences 
results of h, p or hp types refinements, are called 
h, p or hp convergence.

Formulation for Linear Analysis

According to Soriano (2009), FEM 
formulations is performed by direct variation 
form from Rayleigh-Ritz Method or through 
the weak form from the Galerkin Method. 
The variation approach is more classical 
than Galerkin’s; however, the latter has the 
advantage of being more general than the 
former. Both, in the case of physical system 
governed by functional, provide the same 
results. To obtain the system of equilibrium 
equations of an element, one must follow the 
steps presented in Figure 2.

Figure 1: Generic context of FEM.
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Cook et al. (1974) defined the global system of 
algebraic equilibrium equations for a structure 
with n elements, Equation 2.

are transformed from the local reference system 
to the global reference system.

More information on FEM in structural analysis 
can be found in the references (Zienkiewicz and 
Cheung, 1967; Cook et al., 1974; Segerlind, 1984; 
Szabo and Babuâška, 1991; Reddy, 1993; Oñate, 
1995; Assan, 2003; Belytschko and Fish, 2009; 
Soriano, 2009; Eloy, 2011).

Formulation for Non-Linear Analysis

Plumbridge, Matela and Westwater (2003) 
presented the formulations for linear and non-
linear analysis by FEM and compared the main 
differences between them. Bueno and Loriggio 
(2016) point out that the choice of the most 
appropriate procedure to be used depends on 
several factors, such as the magnitude of the 
displacements and rotations in the structure, the 
level of normal working forces, the sensitivity 
of the structure to second order effects, among 
others.

According to Alves Filho (2012), the Newton-
Raphson method for incremental/iterative 
analysis is one of the most widespread nonlinear 
analysis of structural systems by using FEM 
and consists of the fractional application of the 
load, called charge increment, cumulatively 
throughout the analysis until the loading is 
completely applied and the algebraic equilibrium 

Figure 2: Steps to obtain a system of equations of an element (adapted from Soriano, 2009).
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where {F} is the global vector of nodal forces, 
{Q} is the vector of external forces applied to the 
nodes, { }eiR  is the vector of nodal forces applied 
in the structure and {u} is the nodal displacement 
vector.

Soriano (2009) presented a systematic process 
for the determination of the global stiffness matrix 
[K] of the structure in non-time-dependent linear 
behavior. In this process, the stiffness matrix 
of the element is defined in terms of its nodal 
parameters. The element stiffness coefficients 
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equations are solved by an iterative process. 
Equation 4 can be rewritten for non-linear 
problems in Equations 5-7, corresponding to the 
n – 1 increment (Cook et al.,1974; Reddy, 1993; 
Bathe, 2014).

and Newton-Raphson modified. In the first one, 
the tangent stiffness matrix is   updated in each 
iteration and in the second the matrix of tangent 
stiffness is updated only once at the beginning 
of each increment. Figure 3 presented the 
relationship between load (P) and displacement 
(u) in a non-linear analysis by using the 
Newton-Raphson method standard Figure 3 (a) 
and modified, Figure 3 (b). In Figure 3 (a), the 
tangent stiffness matrix [KT] is updated at each 
iteration, for each force increment P. In Figure 3 
(b), the tangent stiffness matrix [KT] is constant 
and updated only once at the beginning of each 
force increment P.

In the Newton-Raphson method, the 
iterative cycle of successive approximations 
seeks to drive the numerical response to a 
minimum error. According to Cook et al. 
(1974) and Zienkiewicz and Taylor (2000), 
equilibrium iterations can cease when the 
approximate results meet the convergence 
criteria. Two convergence criteria can be used, 
the convergence of displacements and the 
convergence of forces. For Zienkiewicz and 
Taylor (2000), errors can occur if only one of 
these types of verification is used. 

Iterative Process P-Δ

According to Gaiotti and Smith (1989); 
Delalibera et al. (2014), at each iteration, a 
new fictitious lateral load (H’i) of a stage i is 
obtained. This procedure is repeated until 
reaching the equilibrium position and can be 
applied in multi-storey buildings. Where the 
dummy shear forces V’i can be obtained by 
Equation 9 and the fictitious side loads H’i by 
Equation 10.

{F}n – {P}n-1 = [KT]n-1{Δu}n

{u}n = {u}n-1 + {Δu}n

{ }[ ]
{ }T
dPK
d u




(5)

(6)

(7)

where [KT] is the tangent stiffness matrix defined 
and n are the displacements increment; {P}n-1 is the 
vector equivalent nodal loads that depends on 
the displacement {u}n. These corrective cycles 
continue until the residual loads ({F}n – {P}n-1) and 
the incremental displacements Δu are sufficiently 
small. 

Sindel and Tezcan (1996) presented more 
details on the formulation of tangent stiffness 
matrix [KT]. Alves Filho (2012), Bathe (2014), 
Bhavikatti (2005), Parente Junior et al. (2014), 
Plumbridge, Matela and Westwater (2003) and 
Reis and Camotim (2012) presented another 
way of expressing the tangent stiffness matrix 
[KT]  (Equation 7). This tangent stiffness matrix 
[KT]  can be decomposed into two plots [KG] e 
[KE],being the first plot relative to geometric 
nonlinear behavior and the second one referring 
to linear elastic behavior, Equation 8.

[KT] = [KG] + [KE] (8)

where [KE] is the elastic stiffness matrix and [KG] 
is the geometric stiffness matrix. 

Vellasco et al. (2014), presented the concepts 
of nonlinear analysis of structures and stated 
that the tangent stiffness matrix [KT] must be able 
to relate, precisely, the displacement and load 
increments; the accuracy of the method depends 
on the accuracy of the tangent stiffness and the 
size of the loading steps.

According to Alves Filho (2012), the Newton-
Raphson method has two definitions, which are 
presented as standard Newton-Raphson method 

1' ( )i
i i i

i

P
V

h   

H’i = V’i-1 – V’i

(9)

(10)

where H’i is the dummy side load of a floor i, 
V’i  is the fictitious shear stress of a floor i, P are 
the vertical forces applied at each level i, h is the 
difference between the levels i (height), D is the 
horizontal displacement of a stage i.
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Delalibera et al. (2014) emphasized the 
importance of using an analytical calculation 
process for second order analysis in symmetric 
and rectangular models without changing the 
pavements geometry, since they provide a coherent 
response to the reality of the structure behavior, 
and considered the results more conservative than 
computational numerical computation.

For Gaiotti and Smith (1989), the iterative 
process P-Δ is repeated for each force increment 
based on the displacement values, until the 
value of the previous iteration does not change 
significantly. Normally, two or three iterations 
are sufficient, if the results do not converge after 
five iterations, the structure can be classified as 
unstable.

MATERIAL AND METHODS

In terms of a model considering a non-linear 
geometric behavior without buckling effects, 
it is proposed a column with 5 meters height 
and square cross-section of 0.16 m², moment of 
inertia  2.133333 × 10-3 m4 in the x and y axes. A 
buckling length Le = 10 m (Le = 2L) and critical 
load was defined as proposed by (Carvalho 
and Pinheiro, 2013). According to Carvalho and 
Pinheiro (2013), a column with these geometric 
characteristics can be classified as having average 
slenderness, as a function of the slenderness 
index (Equation 1). As the slenderness ratio λ = 
86.6, a value close to the limit characterizes the 
slender structure. For this reason it was chosen 
in this case, the classification of slender.

In relation to the conditions of clamping and 
geometry, some simplifying hypotheses were 
adopted for the model conception:
a) It was considered a bar model to study the 
behavior of the proposed problem;
b) The degrees of freedom are restricted at the 
base with no prescribed displacements;
c) The degrees of freedom of the upper border 
are free without any restriction movements;
d) The structure is in stable equilibrium.

The proposed model is a reinforced concrete 
column, with a characteristic resistance fck of 35 
MPa and Poisson coefficient of 0.2. Regarding 
the material behavior, some simplifying 
hypotheses were adopted:
a) The cross section remains flat after the 
deformation beginning until the final 
equilibrium in the deformed position;
b) Perfect adhesion between concrete and steel; 
the specific deformation of a steel bar was 
considered equal to the specific deformation of 
the adjacent concrete;
c) A gneiss aggregate is used, which allows the 
estimation of the modulus of elasticity through 
the formulation presented by NBR-6118 (ABNT, 
2014), secant longitudinal elastic modulus of E 
=  26504037.43 kN/m.
d) The non-linearity of the reinforced 
concrete material was considered as 
recommended by NBR-6118 (ABNT, 2014) 
by reducing the stiffness of the structural 
element (0.8 EI);
e) Reinforced concrete was considered isotropic 
and homogeneous;

Figure 3: Standard (a) and modified (b) Newton-Raphson Methods (adapted from COOK et al.(1974).
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f) The cross-sectional area of   the longitudinal 
compression reinforcement is equal to the 
cross-sectional area of   the longitudinal tensile 
reinforcement.

The acting external loads are represented by 
the loads H and P, since H is the load horizontal 
position located at the top of the column (40 kN) 
and P the vertical load applied at the top of the 
column (8000 kN).

Some simplifying hypotheses were also 
adopted for the actions study:
a) External loads applied are static and clamped, 
other external effects were disregarded;
b) The effects of concrete deformation over time 
were disregarded;
c) The thermal effects and the retraction of the 
concrete were disregarded;
d) The loads are applied in the geometric center 
of the column cross section without eccentricities;
e) The stability of the structural model was 
guaranteed by establishing a vertical load value 
P less than the critical load Pcr = 55804.64 kN;
f) The total vertical load P was divided into 10 
parts and applied incrementally, each increment 
with a value corresponding to 10% of the load P. 
The first analysis was performed for a value of 
P1 = 0.10 P, the second analysis was performed 
with a value of P2 = 0.20 P, and so on, up to the 
force P.

Non-linear analysis by the iterative process P-Δ.
The Iterative Process P-Δ is inserted in 

different geometric non-linear structural analysis 
algorithms. In this study, a computational 
routine was developed on MATLAB in order 
to implement the iterative process P-Δ for n 
analyzes (Figure 4).

Nonlinear geometric analysis by using 
FEM

Nonlinear geometric analysis was performed 
by ABAQUS software. The first step was 
the model generation: a 2D Planar, Type: 
Deformable, Base Feature: Wire Planar. The 
geometric representation was possible using 
the Create Lines: Connected tool, with base 
coordinates (XBase = 0 m; YBase = 0 m) and top 
(XTopo = 0 m; YTopo = 5 m).

The next step was the definition of the 
properties of Elastic Type Isotropic materials 
and Young’s Modulus and Poisson Ration 
values. The cross-sections were defined as 
Beam-type and assignment of these properties 
to the element in Assign Section. The Assembly 
module was used to Create Instances from 
Parts and set assembly (template) to a viable 
referential position analysis. The characteristics 
of the analysis process were defined in the 

Figure 4: Simplified scheme of the Iterative Process P-∆.
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Step, Type Static/-General module, with 
consideration of NLGeom (Geometric Non-
linearity), Incrementation Automatic, resolution 
of equations by Method Direct, with Solution 
Technique Full Newton. The Interaction module 
was not used; this model had no iteration with 
other bodies.

The Load module was used to apply the 
external loads Pn and H, for the n analyzes, 
in Create Load; and for defining boundary 
conditions in Create Boundary Condition. In 
the Mesh module, in Assign Element Type, 
the characteristics of the elements used in the 
numerical simulations were defined. Elements 
type Beam were defined in Family, with 
Quadratic order established in Geometric Order. 
These elements are identified in ABAQUS by 
B22 (A 3-node quadratic beam in a plane).

The Mesh module was also used to define 
the number of elements. It was chosen the by 
Number method, with manual refinement of 
type h (Figure 5). According to Soriano (2009), 
the type h refinement can be done by increasing 
the number of elements, starting with the 
discretization of the continuous medium 
problem in a simple mesh, and gradually this 
model is refined until results with the desired 
accuracy. The Mesh Part tool was used to 
create the mesh with 25 finite elements (post 
refining).

In the Jobs processing module, which is part 
of Analysis, a Create Job processing job was 
created. In this step, after Create Job and Submit, 

the visualization and monitoring of the numerical 
simulation process was performed. The post-
processing was performed in the Visualization 
module, where the graphical representation, 
treatment and selection of the data of the non-
linear analysis of second order effects were 
performed. These results were presented in a 
quantitative way, in MATLAB software, in a 
graph that represented the equilibrium trajectory 
of the proposed model. More details on FEM 
applications with ABAQUS software can be 
found in (Belytschko and Fish, 2009; Campilho, 
2012; Khennane, 2013).

Comparative Analysis

The MATLAB software was used for basic 
statistical analysis of the numerical simulations 
results. A comparative study was carried out in 
order to evaluate the results of the second-order 
effects of the slender column model on reinforced 
concrete between the two distinct formulations: 
Iterative Process P-Δ and Numerical Modeling in 
Finite Elements. The absolute error between the 
simulations from the ten scenarios were obtained by 
Equation 11 and the relative errors by Equation 12.

Figure 5: Finite Element Model.
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where EA is the absolute error between the two 
simulations (in absolute value), ER is the relative 
error between the two simulations with respect 
to the simulation from FEM (also in absolute 
value), 2MEF

xU  is displacement (second order 
effect) in the horizontal axis (x) at the top of the 
column from MEF, 2P

xU
 is displacement (second 

order effect) in the horizontal axis (x) at the top 
of the column from the iterative process P-Δ.

RESULTS AND DISCUSSION

The Iterative Process P-Δ in the proposed 
scenarios (ten analysis) were performed. 
Considering iterative cycles to determine 
the fictitious loads and corresponding 
displacements, the cycle was interrupted when 
the displacements reached a null value with 
precision of four decimal places. The final 
displacements, called second order effects 2P

xU
, 

the sum of displacements of each iteration from 
the iterative process were presented in Table 1.

Results from numerical simulations, 
displacements of the second-order theory 2MEF

xU  
(non-linear) by using FEM from the ten proposed 
scenarios are also presented in Table 1. 

For the numerical simulations by the P-Δ 
Iterative Process of the suggested slender column, 
the number of iterations increased with increasing 
loads. The first eight analyzes reached equilibrium 
by the iterative process. The P-∆ Iterative Process 
did not reach equilibrium in the last two analyzes. 
Results from numerical simulations confirmed 
that with vertical loads higher than 7200 kN 
was not possible to reach equilibrium due to the 

significant contributions of these vertical loads to 
the second order bending moments.

Results from numerical simulations 
supported by FEM are compared to the results of 
the Iterative Process P-Δ, in a statistical analysis 
of the absolute errors EA and relative ER are 
shown in Table 1. 

It is observed in Table 1 that the difference 
between the values   begins to increase with the 
increase of the vertical load P, with maximum 
discrepancy in the scenario with P = 5600 kN. 
Also in Table 1, it is presented the absolute errors 
EA and relative percentage ER, being the eighth 
analysis presented the largest relative error ER  
percentage of 166%.

According to Gaiotti and Smith (1989), two or 
three iterations are usually sufficient, if the results 
do not converge after five iterations, the structure 
can be classified as unstable. In this work, the 
simulations performed reached iterative cycles 
of 4 to 111 iterations, confirming that the larger 
the number of iterations, greater the differences 
between the second order effects determination 
processes. In this case, the structure has reached 
equilibrium in the Iterative Process P-Δ, these 
results may differ significantly from the results 
of numerical simulations by MEF.

Tabarelli et al. (2002), analyzed the geometric 
nonlinear behavior of multi-story buildings in 
steel and compared the application of the dummy 
load method with FEM simulations (ANSYS 
computational simulation), as a response a 3% 
error between both applications. This result is 
compatible with the results of the analyzes carried 
out in the first scenario proposed in this research.

Table 1: Simulation data on FEM and P-∆.

Analyzes Pn 
[ kN ]

H 
[ kN ]

MEF 2
xU

[ m ]
P-∆ 2

xU
[ m ]

EA
[ m ]

ER
[ % ]

1ª 800.00 40.00 0.0345 0.0336 0.0009 2.7

2ª 1600.00 40.00 0.0413 0.0387 0.0026 6.3

3ª 2400.00 40.00 0.0516 0.0458 0.0058 11.2

4ª 3200.00 40.00 0.0689 0.0560 0.0128 18.6

5ª 4000.00 40.00 0.1018 0.0721 0.0297 29.1

6ª 4800.00 40.00 0.1888 0.1012 0.0876 46.4

7ª 5600.00 40.00 1.3780 0.1695 1.2085 87.7

8ª 6400.00 40.00 0.1961 0.5215 0.3254 166.6

9ª 7200.00 40.00 0.0993 - - -

10ª 8000.00 40.00 0.0664 - - -
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Comparative tests between numerical 
simulations and numerical simulations 
showed the feasibility of using numerical 
simulations by using FEM, among these 
works which is highlighted in (Wood and 
Zienkiewicz, 1977). 

CONCLUSIONS

This paper showed that Iterative Process 
P-Δ results were divergent from the numerical 
simulations by using MEF, reaching a relative 
error of 166%. In this research, the iterative 
process proved to be impractical in high load 
situations, not reaching the deformed equilibrium 
situation in two scenarios. This process also 
presented extensive cycles of iterations, reaching 
up to 111 iterations, which significantly affects 
computational costs.

This research ratified the importance of the 
study of the formulations for nonlinear behavior 
analysis of slender columns in reinforced 
concrete. It is observed that the second order 
effects are significant in slender columns and 
that the results may differ depending on the type 
of formulation used.

In other hand, the analysis of the studied 
model from numerical simulations by using FEM 
presented reliable results, which can be used 
in decision making processes in engineering 
projects.
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