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Abstract: Artificial Neural networks (ANN) were evaluated as tools to describe epidemics of cocoa 
witches’ broom and as a potential method to forecast the disease. The ANN were built with 
data collected in Altamira-PA-Brazil, between January 1986 and December 1987, and were 
compared by regression analysis. The variables studied were basidiocarp production, disease 
intensity, and 16 climatic variables. Seven climatic variables were selected at 1 to 10 weeks 
before basidiocarp production and 11 variables at the 8th and 9th weeks before evaluation 
of disease intensity. Temporal series were also analyzed. A total of 37 regression models 
were tested and 100 ANN built. Neuronal networks could forecast disease intensity more 
efficiently than regression equations. The best ANN used 11 climatic variables, in the 9th 
week before disease occurrence.  The best ANN, with two intermediary layers of artificial 
neurons, and regression equation to describe basidiocarp production included the variable 
rainfall duration, in hours.
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INTRODUCTION  

Cocoa (Theobroma cacao L.)  is originated from 
the rain forests of Tropical America, where it is 
still found in wild state. In some countries of Latin 
America and Asia, it constitutes one of the main 
economic supports for the population as well 
as for export FAO (2015).  The witches’ broom 
disease, caused by the fungus Moniliophthora 
perniciosa (Stahel) Aime & Phillips-Mora, 
threatens the cocoa production. Witches’ broom, 
considered the most destructive disease of cacao 
farms Bastos (1991), is spread throughout all 
cocoa producing countries of South America, 

in the islands of the Caribbean and in Central 
America. In the Brazilian Amazon, it causes losses 
of up to 70% in the production of commercial 
plantations older than six years (Bastos, 1990). 
In Bahia, the largest producing area in Brazil, 
the occurrence of the disease is knocking down 
the farms and consequently the Atlantic rain 
forest, what leads to serious ecological damages, 
unemployment and export reduction (Costa 
et al. 2010). In this environment, the climatic 
variables are important to explain the disease 
progress curve of the witches’ broom.

Artificial Neuronal Networks (ANN) are an 
alternative to analyze data, which is not adapted 
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to the statistical methods and chaotic systems 
(Eberhart and Dobbins, 1990; Liu, Wu and Huang, 
2010). The ANN are based in studies of the brain 
and the nervous system and their basic objective 
is “to learn” from its own experience (Rumelhart, 
Widrow and Lehr, 1994; Hertz et al. 2018).  
Arizmendi et al. (1993) used ANN to forecast 
occurrence of pollen grains in the air, which in 
high levels can cause epidemics of allergy. Their 
ANN successfully foresaw the day of the year with 
high concentration of pollen grain.  Forecast of 
temporal series is one of the main applications of 
NN in several knowledge levels (Arizmendi et al. 
1993; Silva and Silva, 1995). Collins (1993a) (1993b) 
mention some uses of the NN in biology and 
biotechnology, mainly in the patterns recognition 
and forecast. The recognition of patterns in a 
series of data (numbers in a database, spectral 
information or photographic images) has crucial 
importance for biology and agriculture. Nater, 
Nater and Baker (1992) accomplished studies to 
reproduce images of roots in soil and obtained 
a good performance of the system to recognize 
image characteristics. Das and Evans (1992) tested 
the ability of mechanical eyes (Machine Vision II) 
to detect dead embryos or unfertile eggs destined 
to incubation. They found 93.5% and 93.9% 
precision in the classification during the third and 
fourth days of incubation, respectively. In plant 
diseases, many researches describe the abilities 
of ANN to recognize patterns (Alves et al. 2017; 
Goodridge et al. 2017). 

Pinto et al. (2002) describe the epidemics 
of coffee rust in Brazil with an ANN and Paul 
and Munkvold (2016) obtained a good ANN 
performance for the prediction of gray leaf 
spot epidemics in maize. Therefore, ANN was 
evaluated in this paper as a tool to describe 
epidemics and as a potential forecaster of disease 
occurrence. The cocoa witches’ broom was used 
as a model of disease.  

 MATERIAL AND METHODS

Data collection

Experimental data of Costa (1993), collected 
in a commercial cocoa farm in Altamira-PA-
Brazil, were used.   

Production of basidiocarp of Crinipellis 
perniciosa and intensity of witches’ broom 
disease in vegetative organs of the cocoa tree

Seven hundred witches’ brooms were placed 
in the field in 1985 and 1986 and the following 
variables were evaluated  weekly:  
TB86 = total of basidiocarps counted in 1986, in 
brooms placed in 1985;  
TB86a = total of basidiocarps counted in 1987, in 
brooms placed in 1985;  
TB87 = total of basidiocarps counted in 1987, in 
brooms placed in 1985 and 1986.  

In vegetative organs of the cocoa trees, the 
following variables were evaluated at every 15 
days: 
AB = total of axillary brooms;  
TB = total of terminal brooms;  
BSC = total of branches with swellings and 
cankers;  
PPS = total of petioles and pulvinus with 
swellings.  
IWB = intensity of witches’ broom (AB + TB + 
BSC + PPS).  

Meteorological data   

From a weather station placed in the 
experiments, the following variables were 
evaluated weekly:  
Tmin = average of the minimum temperature, in 
ºC;  
Tmax = average of the maximum temperature, 
in ºC;  
T25 = number of hours with temperature ≥ 25ºC;  
T30 = number of hours with temperature ≥ 30ºC;
URmin = average of the minimum relative 
humidity, in %; 
URmax = average of the maximum relative 
humidity, in %;  
UR70 = number of hours with relative humidity 
≤ 70%;  
UR95 = number of hours with relative humidity 
≥ 95%;  
TR = total of rainfall, in mm;  
DR = duration of the rainfall, in hours;  
NDR = number of days with rainfall;  
NDR2 = number of days with rainfall ≤ 2 mm;  
NDR25 = number of days with rainfall ≥ 2 and 
≤ 5mm;  
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NDR58 = number of days with rainfall ≥ 5 and 
≤ 8 mm;  
NDR811 = number of days with rainfall ≥ 8 and 
≤ 11 mm;  
NDR11 = number of days with rainfall ≥ 11 mm.  

Data Analysis  

Selection of climatic variables related to 
basidiocarp production and regression 
analysis 

According to the coefficient of determination 
(R2) and the highest frequency of significant 
coefficients of partial determination, seven 
meteorological variables among the 16 studied 
by Costa (1993), were selected: NDR, DR, 
NDR2, NDR58, NDR11, NDR811, NDR25, 
during the intervals of 1 to 10 weeks before 
disease occurrence. These intervals were chosen 
because they contained the largest number of 
the explanatory climatic variables, according to 
Costa (1993).   

To evaluate the influence of the seven 
climatic variables selected on total basidiocarp 
production, the following regression model was 
used:   

Selection of climatic variables related to 
witches’ broom intensity and regression 
analysis  

Eleven climatic variables from the 16 studied 
by Costa (1993) were selected: Tmin, Tmax, 
URmin, T25, T30, UR95, UR70, NDR 25, NDR 
811, NDR 11 and NDR. They were selected 
because they were significant in the regression 
equations developed by Costa (1993). The 
interval between 8 and 9 weeks before disease 
assessment was chosen because of the largest 
frequency of significant associations between 
the climatic variables and disease intensity in a 
multivariate analysis Costa (1993). A model of 
multiple regression with the variables chosen 
was used:   

Y = b0 + b1WK1 + b2WK2+ ...+ b11WK10 (1)

The dependent variable Y is the total 
basidiocarp production in brooms in 1986 
(TB86a) and in 1987 (TB87); b0 is the regression 
constant; b1, b2, ..., b10 are the coefficients of 
partial regression, and WK1, WK2, ..., WK10 
are the values of the climatic variables at the 
weeks 1 to11 before assessment of basidiocarp 
production.  

Other model was also evaluated in which the 
seven climatic variables chosen were considered 
the independent variables for a certain week:  

Y = b0 + b1DR + ...+ b7NDR25 (2)

Thus, for the first, second, 52nd weeks 
before evaluating basidiocarp production, the 
independent variables corresponded to NDR, 
DR, ..., NDR25.  

Y = b0 + b1T25 + ...+ b11 NDR (3)

The dependent variable Y is intensity if 
witches’ broom (IWB); b0 is the constant of 
regression; b1, b2, ..., b11 are coefficients of 
partial regression and T25, T30,…, NDR are  the 
independent variables described above.  

In an attempt select a better adjusted model, 
the observations of weeks 8 and 9 were grouped 
in a new model:  

Y = b0 + b1T25 + ...+ b11 NDR + b12WK (4)

The independent binary variable WK 
represents the observation in week 8 (WK=0) or 
week 9 (WK=1).  

The significance of the coefficients of partial 
regression was evaluated by the t test (P=0.05 
and P=0.01) and those non-significant were 
eliminated. The coefficient of determination, 
error mean square and the significance of F test 
(P 0.05 and P 0.01) selected the best regression 
equations.  

Construction of neuronal networks

The data were organized and the ANN were 
constructed and analyzed with the software 
BRAINCEL 3.0 (Promised Land Technologies, 
Inc.).    
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Neuronal networks used to describe 
basidiocarp production by Crinipellis 
perniciosus 

Data of basidiocarp production from January 
1986 to December 1987, with 96 observations, 
were used.  

The construction of ANN requires the 
definition of a topology, with the elements 
of the input layers, intermediary layers, and 
output. Two models were built in terms of the 
input layer, whereas for both the output layer 
was basidiocarp production. The program it self 
determined the number of artificial neurons and 
intermediary layers.

The first model considered the climatic 
variables delayed by weeks before basidiocarp 
production. The input layer corresponded to the 
independent variables NDR, DR,... , NDR 58, 
where as the output layer would, correspond to 
basidiocarp production in brooms placed and 
counted in 1986  and counted in 1987 (Figure 1).

this model, the basidiocarp production in certain 
period would be explained by the previous first, 
second, third or fourth weeks. Therefore, more 
four nets were built.   

Figure 1: Representation of a neural network 
to describe the production of basidiocarps in 
the first week. The independent variables DCP, 
DPPT PPT25 were used to represent the input 
layer and, the production of basidiocarps (Y), the 
output layer.

The second model considered weeks delayed 
by variables before basidiocarp production. The 
input layer considered the values of one variable 
from the first to the 11th week (Figure 2). 

A temporal series for basidiocarp production 
was also used to construct the ANN. From 
literature reports Arizmendi et al. (1993); Silva 
and Silva (1995), a recursive model was used. In 

Figure 2:  Representation of a neural network 
to describe the intensity of the witches’ broom 
in the 8th week, The variables Tmin, Tmax, DCP 
were used to represent the input layer and, the 
intensity of the disease, the output layer.

Since the highest determination coefficients 
in the regression analysis were for the variable 
DR, ANN were built where the input layer 
consisted simultaneously of observations of DR 
and other climatic variables. An artificial neuron 
was included in the input layer with a binary 
representation of the variable: DR’s value was 1 
and the other variables was 0.  

The specification of a subset of the data 
is requested for training of the network and 
another subset is requested for tests. About 
75% of the original observations were randomly 
selected for training, while 25% for testing it. The 
tolerance (fraction of the interval between the 
highest and the lowest values of the output layer 
data) of 0.05 was considered to establish whether 
a value calculated by the net was acceptable.   

Neuronal networks to describe witches’ 
broom intensity

To construct ANN for witches’ broom 
intensity, the independent variables used in the 
input layer were selected for regression analysis 
(Tmin, Tmax,... , NDR) and disease intensity was 
the output layer.  The networks were evaluated 
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with one and two intermediary layers. The other 
characteristics were identical to the networks 
built for basidiocarp production.   

Comparison between linear regression and 
neuronal networks  

The mean error of forecast (MEF) and the 
mean square error (MSE) were used to compare 
regression to the ANN where:     

considered seven weather variables always 
including the variables DR and NDR58. A larger 
number of significant interactions took place in 
the first and the seventh weeks before disease 
occurrence (Table 1). 

For disease intensity, all equations that 
included the weeks from 1 to 10 before disease 
occurrence R2 lower than 0.45. The F test was 
not significant for the weeks 3, 9, and 10 before 
disease occurrence. The variables DR and 
NDR11 showed larger number of significant 
interactions, 5 and 4 respectively (Table 2).  

For all regression models that included 11 
weather variables and witches’ broom intensity, 
the values of R2 were lower than 0.57, although 
significant for the t test (P = 0.01). The variables 
T25 and NDR11 were significantly included 
with higher frequency, although T25 was not 
included in the equation for weeks 8 and 9. The 
other significant variables were Tmax and T30 
(P=0.01), in the equation 89 (Table 3). 

Neuronal networks   

The ANN that considered the weather 
variables one-week before basidiocarp 
production, were built with two intermediary 
layers. Lowest MSE and MEF were for the 
variables DR and NDR2.  For the ANN with 
an intermediary layer for NDR2, the MEF was 
28.58%, although MSE was high.  

MEF = [S(Xobs-Xcalc)*100/(Xobs+1)]/n  

MSE = [S (Xobs-Xcalc)2]/n   

where S  is the i sum to n, Xobs the value of  
basidiocarp production or  disease intensity 
observed, Xcal the  value of the regression or 
the net neuronal calculated, and n the total of 
observations.  

RESULTS AND DISCUSSION

Regression analysis for basidiocarp pro-
duction and witches’ broom intensity  

For basidiocarp production, the regression 
models with highest determination coefficients 

Table 1: Coefficients of determination (R2) and partial regression between seven climatic variables 
per week and the production of basidiocarps of the witches’ broom in Altamira, Pará, Brazil.

Time interval in weeks, after the observations of climate 
variables to the production of basidiocarps Model

Climatic 1 2 3 4 5 6 7 8 9 10 Complete Reduced

variable Partial regression coefficients R2
adjusted R2

 

DCP 17.30** -2.38ns 3.36ns 16.14ns 4.46ns 10.93ns 16.53* 2.44ns -0.88ns -10.04ns 0.52** 0.44**

DPPT -16.38 ns -9.35** -7.75* -2.52 ns 1.97 ns 8.19** 14.94** 10.57** 9.19** -0.28 ns 0.70** 0.69**

PPT11 34.86** 1.05 ns 1.75 ns -8.76 ns -15.97 ns 8.68 ns 24.44* 19.83 ns 18.66 ns 6.9 ns 0.48** 0.36**

PPT2 -23.09** 6.46 ns -7.66 ns -8.15 ns 0.17 ns -16.81* -19.3** -1.81 ns -1.87 ns 14.11** 0.56** 0.52**

PPT811 61.6 ns 47.18 ns 36.47 ns 32.93 ns -4.14 ns -22.35 ns 20.21 ns -15.11 ns -13.22 ns -3.75 ns 0.13ns _

PPT25 49.39** 18.34 ns 43.39* 36.17 ns 40.44** 57.39** 17.07 ns 6.75 ns 5.96 ns -30.13 ns 0.50** 0.41**

PPT58 49.29** 21.13 ns 14.29 ns 35.39* 33.23* 56.53** 70.09** 60.63** 10.08 ns -4.44 ns 0.64** 0.62**
ns, * and ** - not-significant and significant at the levels of  0.05 and 0.01 probability, respectively, by t test 
(partial regression coefficient) and F test (R2 and adjusted R2), DCP = number of days with precipitation; DPPT 
= rainfall duration in hours; PPT11 = number of days with rainfall > 11 mm; PPT2 = number of days with 
rainfall  < 2 mm; PPT811 = number of days with rainfall > 8 and < 11 mm; PPT25 = number of days with 
rainfall > 2 and > 5 mm and PPT 58 = number of days with rainfall > 8 and < 11 mm.

(5)

(6)
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Table 3: Coefficients of determination (R2) and partial regression coefficients between the 11 weeks 
prior to the observation of the intensity of the witches’ broom and climate in Altamira, Pará, Brazil.

Time 
intervals 
in weeks

Climatic variables Models

Tmin Tmax URmin T25 T30 UR95 UR70 PPT25 PPT811 PPT11 DCP Complete Reduced
Partial 

regression 
coefficients 

R2
adjusted R2

8 -0.13ns -1.85ns 0.05ns 0.12** 0.12ns -0.04ns 0.02ns 0.68ns -0.65ns 0.90* 0.34ns 0.51** 0.22**
9 -0.03ns -1.66ns -0.07ns 0.12** 0.10ns -0.05ns -0.09ns 0.76ns -0.59ns 0.91* 0.31ns 0.57** 0.32**

8+9 -0.08ns -1.74* -0.06ns - 0.10* -0.04ns 0.58ns 0.72ns -0.63ns 0.90* 0.32ns 0.51**    0.31*
ns, * and **- not-significant and significant at the levels of  0.05 and 0.01 probability, respectively, by t test 
(partial regression coefficient) and F test (R2 and adjusted R2), Tmin = average minimum temperature; Tmax 
= average maximum temperature (ºC); URmin = average minimum temperature; T25 = number of hours with 
temperature ≥ 25ºC; T30 = number of hours with temperature ≥ 30ºC; UR95 = number of hours with relative 
humidity ≥ 95ºC; UR70 = number of hours with relative humidity ≤ 70%; PPT25 = number of days with rainfall 
≥ 2 and ≤ 5 mm; PPT811 = number of days with rainfall ≥  8 e ≤ 11 mm; PPT11 = number of days with rainfall 
≥ 11 mm; DCP = number of days with rainfall.

Table 2: Coefficients of determination (R2) and partial regression from 1 to 10 weeks out of phase by 
climatic variable and the production of basidiocarps of the witches’ broom in Altamira, Pará, Brazil.

Weeks Climatic variable Model
before dppt ppt2 ppt25 PPT58 PPT811 PPT11 DCP Complete Reduced

basidiocarp 
production Partial regression coefficients R2

adjusted R2
 

1 14.79** 32.26ns 53.39ns 63.21ns 49.89ns 100.96** 20.91ns 0.42* 0.30**
2 -20.41** 33.31ns 45.29ns 31.36ns 37.26 s 88.91* 29.22ns 0.32** 0.17**
3 -7.22ns 15.53ns 45.55ns -3.51ns 14.19ns 36.13ns 23.65ns _ _
4 8.47ns -2.54ns 5.13ns -19.31ns -39.11ns -54.70ns 38.73* 0.31* 0.21ns

5 10.96* -27.16 ns -18.82 ns -34.51 ns -66.24ns -100.42* 40.07* 0.35** 0.31**
6 11.82* -76.39* -65.55 ns -77.27 ns -141.99* -115.68* 31.43* 0.45** 0.42**
7 10.99* -22.07 ns -46.75 ns -2.96 ns -45.99 ns -46.98 ns 26.11 ns 0.42** 0.33**
8 92.29 ns -36.44 ns -79.74 ns -12.56 ns -100.25* -65.47 ns 27.76 ns 0.33** 0.19ns

9 9.09 ns 9.89 ns -44.56 ns -22.66 ns -39.22 ns -16.19 ns 30.73 ns _ _
10 7.58 ns 10.84 ns -32.47 ns -17.45 ns 14.29 ns -23.40 ns 34.57 ns _ _

ns, * and ** - not-significant and significant at the levels of  0.05 and 0.01 probability, respectively, by t test 
(partial regression coefficient) and F test (R2 and adjusted R2), DCP = number of days with precipitation; DPPT 
= rainfall duration in hours; PPT11 = number of days with rainfall > 11 mm; PPT2 = number of days with 
rainfall  < 2 mm; PPT811 = number of days with rainfall > 8 and < 11 mm; PPT25 = number of days with 
rainfall > 2 and > 5 mm and PPT 58 = number of days with rainfall > 8 and < 11 mm.

The ANN used to describe basidiocarp 
production in the weeks 1 to 10 before disease 
occurrence did not provide satisfactory results. 
Values of MSE and MEF were high for all the 
ANN tested. The lowest MEF was 52.43% for 
the data of weeks 5 and 6 in the new inoculum 
sources of 1986 and old of 1987 with a MSE larger 
than 20.000.  

The temporal series did not provide 
satisfactory results. Lowest MEF was 18.97%, 

for one and seven weeks before basidiocarp 
production, for the old inoculum sources. The 
use of the variable DR plus the others as inputs 
did not present good results either. MSE and 
MEF were high for six ANN tested.   

For three ANN built for disease intensity, 
MSE’s were low and MEF was 3.01 and 9.61 for 
the week 9 and weeks 8+9, respectively. Lowest 
MEF was obtained at week 9, for both disease 
intensity and basidiocarp production.  
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Comparison between regression analysis and 
neuronal networks to describe basidiocarp 
production and intensity of witches’ broom

Artificial Neuronal networks and regression 
models obtained lower MSE and MEF for the 
intensity of the disease (Table 4). High adjustment 
level was in week 9 (Figure 3). 

In the regression analysis for basidiocarp 
production, lower MEF (11.98%) was with NDR 
(Figure 4). 

For the ANN, lowest MEF was obtained with 
DR (12.56%) with the topology 10-5-2-1 (Table 5). 

In the regression analysis for the weeks 
delayed for variable, both MEF and MSE were 
too high (Table 6).

Good adjustment for basidiocarp production 
was found when using DR variable (Figure 5). 

The most descriptive variables were DR 
(duration of rainfall, in hours) and NDR58 
(number of days with rainfall between 5 and 8 
mm) in the regression analysis for basidiocarp 
production. It is already known that rainfall is 
the most important meteorological factor for 
basidiocarp production (Bastos and Silva, 1980; 
Aranzazu, 1990). Costa (1993) found a high 

Table 4:   Intensity of the witches’ broom of cocoa: comparison between regression analysis and 
neural networks.

Time 
intervals
in weeks

Regression Neural network
Model

Complete Reduced Root mean 
square error

Prediction mean 
error (%)

Root mean 
square error

Prediction mean 
error (%)

R2
adjusted R2

 

8 0.51** 0.22** 114.56 82.70 4.735 38.37
9 0.57** 0.32** 97.32 1549.40 32.06 3.01
89 0.51** 0.31* 86.15 16.80 12.27 9.61

* and **- significant between the levels 1 and 5%, respectively, by the F test (R2 and adjusted R2). 

Figure 3: Observed values    of witches’ broom intensity versus predicted values by neural networks 
and regression model.
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Table 5: Basidiocarps production of the witches’ broom of chocolate tree: comparison between 
regression analysis and neural networks for the week delayed variables. 

Regression Neural network
Model

Climatic 
variables Complete Reduced Root mean 

square error
Prediction mean 

error (%)
Root mean 

square error
Prediction mean 

error (%)
R2

adjusted R2
 

DCP 0.52** 0.44** 14622.81 11.98 36752.85 152.53
DPPT 0.70** 0.69** 13876.29 126.88 1448.27 12.56
PPT11 0.48** 0.36** 5852.49 -140.15 15417.10 119.06
PPT2 56.40** 0.52** 5201.86 -137.85 10746.46 28.58

PPT811 0.13ns - - - 7525.00 87.78
PPT25 0.50** 0.41** 7409.47 1426.10 9754.85 1458.85
PPT58 0.64** 0.62** 3354.00 796.04 8917.11 375.89

ns, * and **- not-significant and significant at the levels of  0.05 and 0.01 probability, respectively, by t test 
(partial regression coefficient) and F test (R2 and adjusted R2), DCP = number of days with precipitation; DPPT 
= rainfall duration in hours; PPT11 = number of days with rainfall > 11 mm; PPT2 = number of days with 
rainfall  < 2 mm; PPT811 = number of days with rainfall > 8 and < 11 mm; PPT25 = number of days with 
rainfall > 2 and > 5 mm and PPT 58 = number of days with rainfall > 8 and < 11 mm.

Figure 4: Observed values    of basidiocarps production versus predicted values by neural networks 
and regression model.

coefficient of determination (0.86) for DR during 
twenty weeks before basidiocarp production. 
The variable NDR (days with rainfall) presented 
the lowest MEF (11.98%) in all the adjusted 
equations. Lowest MSE (12.56%) was found 
in the ANN that used DR as input with the 
topology 10-5-2-1.    

There are some alternatives to reduce the 
MEF of the ANN, such as increasing the number 
of intermediary layers, artificial neurons in the 

intermediary layers, and new variables, to best 
represent the phenomenon. The selection of new 
variables related to weather, pathogen, or host 
is one of the main phases in the construction of 
the ANN. The main problem is to choose the 
variables that best represent a phenomenon, 
not excluding the importance of determining 
the number of intermediary ANN layers (Pinto, 
2002). The human brain automatically discards 
the unnecessary variables to obtain an answer 
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Van der velde (1997) while in the construction; 
an exhaustive work of variable selection is 
needed. For instance, Robinson and Mort (1997) 
have tested several topologies and combined 
temperature, precipitation, relative humidity, 

and wind variables, in the input layer, to build 
an ANN to forecast frost occurrence in 24 hours. 
This exhaustive work demands a large number 
of hours to select the variables, to elaborate 
topologies, and mainly to train the ANN.   

Table 6:   Basidiocarp production: comparison between regression analysis and neural networks for 
the week by delayed variable.

Regression Neural networks
Model

S.A.O.F.1 Complete
R2

Reduced
R2

adjusted

Root mean 
square error

Prediction mean 
error (%)

Root mean 
square error

Prediction mean 
error (%)

1 41.95* 29.54** 18557.28 519.93 247167.09 1379.3
2 32.13** 17.34** 6338.43 2279.48 33073.13 1498.15
3 23.05 ns 10.0 ns - - 38863.0 155.79
4 30.51* 21.43ns 83096.48 -823.68 18100.00 1571.69
5 34.56** 31.00** 5135.28 1773.7 2056184.75 29552.72
6 45.15** 42.03** 8998.37 1921.54 42498.02 1921.54
7 41.98** 33.01** 4974.55 1979.37 1762.78 1180.61
8 33.06** 19.12ns 419414.24 5151.32 140387.00 4058.19
9 26.90ns 17.89ns _ _ 98562.56 1056.89
10 22.66ns 14.90ns _ _ 187478.56 2541.56

1S.A.O.F. - Weeks earlier observation of fruiting of the pathogen. ns, * and **- not-significant and significant at 
the levels of  0.05 and 0.01 probability, respectively, by t test (partial regression coefficient) and F test (R2 and 
adjusted R2).

Figure 5:  Production of basidiocarps: the observed values   versus predicted values by neural 
networks  (-∆-) and regression (-*-) , for the variable DPPT , using the network topology 10-5-2-1.
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The time of training varied from 1 second to 
1 hour and 9 minutes, totaling approximately 34 
hours. Although the time of construction is long, 
compared to the regression analysis, the NN 
represent a new approach, in trying to describe 
witches’ broom epidemics and several other 
phenomena, with which man has not been success 
full using mathematical modeling. Witches’ 
broom represents one of these phenomena, 
probably due to genetic diversity of the cocoa 
trees. This diversity, present in the experiment of 
Costa (1993), can become one of the variables to 
be included in the ANN construction. Finally, the 
use of ANN to describe epidemics is promising 
and should be an alternative tool for biological 
data and systems where a great number of 
variables exist.  

In general, the MEF and MSE in the ANN 
built with two intermediary layers were smaller 
when compared to that of a layer. However, 
expand the layer of artificial neurons from one 
to two, increased the MEF. Neuronal networks 
with two intermediary layers is less found 
in the literature. Honjo and Takakura (1991) 
successfully developed an ANN to forecast 
supply of water and nutrients for tomato crop 
using temperature, humidity, and solar radiation 
as inputs and two intermediary layers. Robinson 
and Mort (1997) also obtained good results with 
two intermediary layers for frost forecast.  The 
use of two intermediary layers can constitute an 
alternative to forecast basidiocarp production 
and other phenomena that require for the input 
layer a large number of climatic variables.  

The increase in the number of inputs caused 
an increase in the number of artificial neurons 
of the intermediary layers. This fact is common 
when constructing ANN’s, as the increase in 
the number of inputs elevates the complexity 
in getting an answer (Hertz et al., 2018). The 
human brain also detects this complexity. To 
solve problems where two or more variables are 
involved or in situations that require different 
senses (vision, touch, and sense of smell), large 
amount of neurons and different areas in the 
brain are required, which increases the time 
of answer. For example, it is easier to solve for 
the value of 10+10 than for 132.52. The ANN 
simulates this behavior and they increases the 
number of artificial neurons in the intermediary 

layers (Movshon, 1996; Van der velde, 1997). 
The largest time for training nets to describe 
basidiocarp production reflects this situation.  

Some researchers Arizmendi et al. (1993); 
Silva and Silva (1995); Paul and Munkvold 
(2016) have successfully used temporal series 
to forecast some phenomena. These series are 
also frequently used to forecast multinational 
stock values and agricultural prices. However, 
for basidiocarp production, the results with 
temporal series were not good. For instance, 
when the output was zero, the tendency was to 
assume high values to forecast the production. 
Probably, the number of observations was small 
to describe this phenomenon. The graphs of the 
temporal series for both basidiocarp production 
and disease intensity suggested a nonlinear, 
non-periodical or chaotic system, because the 
variables did not exhibit a pattern of behavior 
in the observed interval (Bianchi; Arizmendi 
and Sanchez, 1992; Arizmendi et al. 1993). 
Therefore, to obtain better results, it is required 
either a larger number of observations or the 
construction of new ANN in intervals of time 
capable to describe the trends.  

Regression models and ANNs were more 
appropriate to describe disease intensity than 
basidiocarp production.  For the models chosen 
in the regression analysis, the variables that 
best explained disease intensity were T25 and 
NDR11, although for Costa (1993) Tmax was the 
best explanatory variable. Costa (1993) observed 
high R2 values for the weeks 8 and 9 before 
disease evaluation. Smallest MSE’s and MEF 
values were found for all the regression models 
and adjusted ANNs. Disease intensity was the 
dependent variable with larger possibility of use 
in the description/forecast of witches’ broom. 
ANN seems to be a good alternative for intensity 
of cocoa witches’ broom, as lower MEF and MSE 
were generated with it than with regression 
analysis. With greater experience and training 
of the net, smaller mistakes are made. Therefore, 
to refine the technology of ANN, more studies 
are required with a larger data set obtained in 
several places with climatic variables.  

 A criticism to the ANN is the black box 
nature of the results (Hertz et al. 2018), because 
it is not well known how the nets arrive to a 
result. Additionally, comparative variables do 
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not exist to analyze ANN suitability, as it is the 
case of the R2, the test F and the test t, among 
other, to test statistical models. However, it is not 
well known either, how the human brain obtains 
an answer. In addition, there is no mathematical 
explanation, as proposed by statistics, but the 
hypothesis biological-eletro-chemistry. If the 
ANNs are proposed to simulate the human brain, 
then, it is fair to consider that they can imitate 
its behavior. Certain people can successfully 
foresee the weather due to the accumulation of 
experience and several observations of the nature 
that surrounds them along the years. Similarly, 
the neural nets may also simulate this behavior.
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